Что такое альдегиды в химии определение. Окисление альдегидов: процесс, конечный продукт

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная групп а:

Как можно видеть, карбоксильная группа состоит из карбонильной группы –С(О)- , соединенной с гидроксильной группой –ОН.

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

2) аммиаком

3) основными и амфотерными оксидами:

4) основными и амфотерными гидроксидами металлов:

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислоты Название кислоты тривиальное/систематическое Название соли тривиальное/систематическое
HCOOH муравьиная/ метановая формиат/ метаноат
CH 3 COOH уксусная/ этановая ацетат/ этаноат
CH 3 CH 2 COOH пропионовая/ пропановая пропионат/ пропаноат
CH 3 CH 2 CH 2 COOH масляная/ бутановая бутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

Реакции разрушения карбоксильной группы (декарбоксилирование)

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ.

ОПРЕДЕЛЕНИЕ

Альдегиды – органические вещества, относящиеся к классу карбонильных соединений, содержащих в своем составе функциональную группу –СН = О, которая называется карбонильной.

Общая формула предельных альдегидов и кетонов C n H 2 n O. В названии альдегидов присутствует суффикс –аль.

Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН 2 = О, ацетальдегид (уксусный альдегид) – СН 3 -СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

СН 3 -СН 2 -СН 2 -СН = О (бутаналь);

СН 3 -СН(СН 3)-СН = О (2-метилпентаналь);

СН 3 -С(СН 2 -СН 3) = О (метилэтилкетон).

Химические свойства альдегидов

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; α-СН кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

1. Реакции присоединения:

— воды с образованием гем-диолов

R-CH = O + H 2 O ↔ R-CH(OH)-OH;

— спиртов с образованием полуацеталей

CH 3 -CH = O + C 2 H 5 OH ↔CH 3 -CH(OH)-O-C 2 H 5 ;

— тиолов с образованием дитиоацеталей (в кислой среде)

CH 3 -CH = O + C 2 H 5 SH ↔ CH 3 -CH(SC 2 H 5)-SC 2 H 5 + H 2 O;

— гидросульфита натрия с образованием α-гидроксисульфонатов натрия

C 2 H 5 -CH = O + NaHSO 3 ↔ C 2 H 5 -CH(OH)-SO 3 Na;

— аминов с образованием N-замещенных иминов (основания Шиффа)

C 6 H 5 CH = O + H 2 NC 6 H 5 ↔ C 6 H 5 CH = NC 6 H 5 + H 2 O;

— гидразинов с образованием гидразонов

CH 3 -CH = O + 2 HN-NH 2 ↔ CH 3 -CH = N-NH 2 + H 2 O;

— циановодородной кислоты с образованием нитрилов

CH 3 -CH = O + HCN ↔ CH 3 -CH(N)-OH;

— восстановление. При взаимодействии альдегидов с водородом получаются первичные спирты:

R-CH = O + H 2 → R-CH 2 -OH;

2. Окисление

— реакция «серебряного зеркала» — окисление альдегидов аммиачным раствором оксида серебра

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓;

— окисление альдегидов гидроксидом меди (II), в результате которого выпадает осадок оксида меди (I) красного цвета

CH 3 -CH = O + 2Cu(OH) 2 → CH 3 -COOH + Cu 2 O↓ + 2H 2 O;

Эти реакции являются качественными реакциями на альдегиды.

Физические свойства альдегидов

Первый представитель гомологического ряда альдегидов – формальдегид (муравьиный альдегид) – газообразное вещество (н.у.), альдегиды неразветвленного строения и состава С 2 -С 12 – жидкости, С 13 и длиннее – твердые вещества. Чем больше атомов углерода входит в состав неразветвленного альдегида, тем выше его температура кипения. С увеличением молекулярной массы альдегидов увеличиваются значения величин их вязкости, плотности и показателя преломления. Формальдегид и ацетальдегид способны смешиваться с водой в неограниченных количествах, однако, с ростом углеводородной цепи эта способность альдегидов снижается. Низшие альдегиды обладают резким запахом.

Получение альдегидов

Основные способы получения альдегидов:

— гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо 2 (СО) 8) Реакция проводится при нагревании до 130С и давлении 300 атм

СН 3 -СН = СН 2 + СО +Н 2 →СН 3 -СН 2 -СН 2 -СН = О + (СН 3) 2 СНСН = О;

— гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

НС≡СН + Н 2 О → СН 3 -СН = О;

— окисление первичных спиртов (реакция протекает при нагревании)

СН 3 -СН 2 -ОН + CuO → CH 3 -CH = O + Cu + H 2 O.

Применение альдегидов

Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.) используют в качестве ингредиентов в парфюмерии.

Примеры решения задач

ПРИМЕР 1

Задание Бромированием С n H 2 n +2 получили 9,5 г монобромида, который при обработке разбавленным раствором NaOH превратился в кислородсодержащее соединение. Пары его с воздухом пропущены над раскаленной медной сеткой. При обработке образовавшегося при этом нового газообразного вещества избытком аммиачного раствора Ag 2 O выделилось 43,2 г осадка. Какой углеводород был взят и в каком количестве, если выход на стадии бромирования 50%, остальные реакции протекают количественно.
Решение Запишем уравнения всех протекающих реакций:

C n H 2n+2 + Br 2 = C n H 2n+1 Br + HBr;

C n H 2n+1 Br + NaOH = C n H 2n+1 OH + NaBr;

C n H 2n+1 OH → R-CH = O;

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓.

Осадок выделившийся в последней реакции – это серебро, следовательно, можно найти количество вещества выделившегося серебра:

M(Ag) = 108 г/моль;

v(Ag) = m/M = 43,2/108 = 0,4 моль.

По условию задачи, после пропускания вещества полученного в реакции 2 над раскаленной металлической сеткой образовался газ, а единственный газ –альдегид – это метаналь, следовательно, исходное вещество – это метан.

CH 4 + Br 2 = CH 3 Br + HBr.

Количество вещества бромметана:

v(CH 3 Br) = m/M = 9,5/95 = 0,1 моль.

Тогда, количество вещества метана, необходимое для 50% выхода бромметана – 0,2 моль. М(CH 4) = 16 г/моль. Следовательно масса и объем метана:

m(CH 4) = 0,2×16 = 3,2 г;

V(CH 4) = 0,2×22,4 = 4,48 л.

Ответ Масса метана — масса 3,2 г, объем метана-4,48 л

ПРИМЕР 2

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: бутен-1 → 1-бромбутан + NaOH → А – Н 2 → В + OH → С + HCl → D.
Решение Для получения 1-бромбутана из бутена-1 необходимо провести реакцию гидробромирования в присутствии пероксидных соединений R 2 O 2 (реакция протекает против правила Марковникова):

CH 3 -CH 2 -CH = CH 2 + HBr → CH 3 -CH 2 -CH 2 -CH 2 Br.

При взаимодействии с водным раствором щелочи 1-бромбутан подвергается гидролизу с образованием бутанола-1 (А):

CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH → CH 3 -CH 2 -CH 2 -CH 2 OH + NaBr.

Бутанол-1 при дегидрировании образует альдегид – бутаналь (В):

CH 3 -CH 2 -CH 2 -CH 2 OH → CH 3 -CH 2 -CH 2 -CH = О.

Аммиачный раствор оксида серебра окисляет бутаналь до аммонийной соли – бутирата аммония (С):

CH 3 -CH 2 -CH 2 -CH = О + OH →CH 3 -CH 2 -CH 2 -COONH 4 + 3NH 3 + 2Ag↓ +H 2 O.

Бутират аммония при взаимодействии с соляной кислотой образует масляную (бутановую) кислоту (D):

CH 3 -CH 2 -CH 2 -COONH 4 + HCl → CH 3 -CH 2 -CH 2 -COOH + NH 4 Cl.

Альдегидами и кетонами называются производные углеводородов, содержащие карбонильную группу, или оксогруппу. В альдегидах, как правило, карбонильная группа связана одной из своих свободных валентностей с атомом водорода, другой – с каким-либо углеводородным радикалом. Все альдегиды содержат группу СОН, называемую альдегидной. В кетонах карбонильная группа двумя своими валентностями соединена с какими-либо углеводородными радикалами. Альдегиды и кетоны бывают насыщенными, ненасыщенными и ароматическими. Предельные альдегиды и кетоны с одинаковым числом углеродных атомов изомерны друг другу и имеют одну и ту же суммарную формулу.

Рисунок 3.3 – Строение карбонильной группы

Альдегиды называют или по кислотам, в которые они переходят при окислении (тривиальная номенклатура), или по названию предельных углеводородов с добавлением окончания -аль (систематическая номенклатура IUРАС). Кетоны по рациональной номенклатуре называют по названию радикалов, входящих в их молекулу, с добавлением окончания -кетон. По систематической номенклатуре IUРАС кетоны называют по названию соответствующего углеводорода с добавлением окончания -он и с указанием местонахождения карбонильной группы.

Наличие карбонильной группы обусловливает высокую реакционную активность альдегидов и кетонов и определяет их способность к многочисленным и разнообразным реакциям.

Альдегиды легко окисляются до карбоновых кислот с тем же углеродным скелетом.

1. Они могут окисляться даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор гидроокиси серебра:

2. Реакцию альдегидов с аммиачным раствором гидроокиси серебра называют «реакцией серебряного зеркала» – окисление аммиачным раствором оксида серебра (реактив Толленса). Ее используют для обнаружения альдегидов:

R–CH=O + 2OH → RCOOH + 2Ag↓ + 4NH3 + H2O.

Кетоны не окисляются ни кислородом воздуха, ни слабыми окислителями, не восстанавливают аммиачный раствор гидроокиси серебра. Они окисляются лишь под действием более сильных окислителей, например, перманганата калия, причем окисление происходит иначе, чем окисление альдегидов. При окислении молекула кетона расщепляется с образованием молекул кислот или кислоты и кетона с меньшим числом углеродных атомов, чем первоначальный. Разрыв цепи углеродных атомов происходит рядом с карбонильным атомом углерода:

Если в молекуле кетона содержится два различных радикала, то распад молекулы при окислении может идти по двум возможным направлениям, например:

Таким образом, произведя окисление кетона и узнав, какие кислоты получились в результате окисления, можно определить строение кетона.

3. Реакция окисления гидроксидом меди(II):

а) в виде свежеприготовленного осадка Cu(OH)2 при нагревании;

б) в форме комплекса с аммиаком (OH)2;

в) в составе комплекса с солью винной кислоты (реактив Фелинга).

При этом образуется красно-кирпичный осадок оксида меди(I) или металлическая медь (реакция «медного зеркала», более характерная для формальдегида):

R–CH=О + 2Cu(OH)2 → RCOOH + Cu2O↓ + H2О;

H2C=О + Cu(OH)2 → HCOOH + Cu↓ + H2О;

R–CH=O + 2(OH)2 → RCOOH + Cu2O↓ + 4NH3 + 2H2O;

R–CH=O + 2Cu(OH)2/соль винной кислоты → RCOOH + Cu2O↓ + 2H2O.

При нагревании наблюдают появление осадка оксида меди(I) желтого цвета, переходящего в красный:

Муравьиный альдегид, в отличие от других альдегидов, восстанавливает оксиды меди, образуя «медное зеркало».

4. Реакция восстановления альдегидами реактива Фелинга.

Реакционную смесь нагревают. При этом раствор сначала окрашивается в зеленый, а затем в желтый цвет, и наконец, выпадает оксид меди (I) красного цвета:

5. Цветная реакция на альдегиды с фуксиксернистой кислотой: наблюдается постепенное появление красно-фиолетовой окраски. Если к смеси муравьиного альдегида с фуксинсернистой кислотой прибавлять концентрированную соляную кислоту, то появляется характерная синяя окраска. В смеси изовалерианового альдегида с фуксинсернистой кислотой под влиянием соляной кислоты окраска сравнительно быстро исчезает.

Рисунок 3.4 – Качественные реакции на альдегидную группу

Как альдегиды, так и кетоны могут присоединять водород, синильную кислоту, магний-органические соединения, гидросульфит натрия.

С гидроксиламином и фенилгидразином альдегиды и кетоны реагируют с образованием оксимов и фенилгидразонов; при действии пятихлористого фосфора атом кислорода в молекулах альдегидов и кетонов замещается двумя атомами хлора.

Однако между альдегидами и кетонами имеются и существенные различия. Так, в отличие от альдегидов кетоны не окрашивают бесцветный раствор фуксинсернистой кислоты, в мягких условиях не конденсируются под действием щелочей, за редкими исключениями, и дают со спиртами ацетали только в присутствии кислот Льюиса. Из кетонов с гидросульфитом натрия реагируют только те, которые содержат одну метильную или две метиленовые группы в непосредственном соседстве с карбонилом.

Окисляются кетоны труднее, чем альдегиды, причем при их окислении происходит разрушение молекулы, труднее для кетонов протекают и реакции конденсации.

Применение альдегидов и кетонов.

Метаналь (муравьиный альдегид) CH2=O: получение фенолформальдегидных смол; получение мочевино-формальдегидных (карбамидных) смол; полиоксиметиленовые полимеры; синтез лекарственных средств (уротропин); дезинфицирующее средство; консервант биологических препаратов (благодаря способности свертывать белок).

Этаналь (уксусный альдегид, ацетальдегид) СН3СН=О: производство уксусной кислоты; органический синтез.

Ацетон СН3–СО–СН3: растворитель лаков, красок, ацетатов целлюлозы; сырье для синтеза различных органических веществ.

booksshare.net -> Добавить материал

Добавить материал

Спасибо, что решили отправить нам материалы

Спасибо от всех людей, желающих поглощать знания и заниматься научной деятельностью и, кроме того, от тех, кто желает получать плоды научной деятельности в виде улучшающих жизнь инноваций.

Отправка Вами материалов позволит Вам скачивать электронные книги с нашего сайта. Однако, следует заметить, что отпарвляемый Вами материал не должен быть представлен в Интернете, иначе не будет смысла выкладывания на сайте материала, который и так без проблем найдут он-лайн. Проверить начличие такового в Интернете не сложно: заходите в поисковик (к примеру, яндекс), вводите цельный отрывок из текста материала (слов 20 подряд без знаков препинания — они будут только мешаться), желательно из середины работы, так как введения могут и присутствовать в Интернете, а основной текст — отсутствовать.

После осуществления поиска, смотрите, не нашёл ли поисковик точно такой же текст (если он есть, то он обязательно будет входить в первую десятку найденых сайтов). Если текста не найдено — то можно отправлять материал и исправить то, что люди, которые, возможно, желают воспользоваться материалом, не могут найти его.

Как получить уксусный альдегид

Можно проверить наличие этого материала также и в других поисковиках.

Следует отметить, что для сайта очень большую ценность представляют материалы, которые едва ли можно найти в библиотеках, а именно — дипломные работы, диссертации, монографии и прочие Ваши работы, которые не распространяются в больших количествах в печатных изданиях, в отличие от учебных пособий, известных работ, и т.п., которые, однако, также обладают немалой научной ценностью и, как следствие, ценностью для всего человечества.

Вы можете отправить материал на наш почтовый ящик или заполнив форму ниже:

Реактивы и материалы: формальдегид, 40%-ный водный раствор; сульфат меди CuSO4, 0,2 н.

Напишите реакцию окисления уксусного альдегида Cu(OH)2

раствор; едкий натр, 2 н. раствор.

В пробирку помещают 4 капли раствора едкого натра, разбавляют 4 каплями воды и добавляют 2 капли раствора сульфата меди (II). К выпавшему осадку гидроксида меди (II) прибавляют 1 каплю раствора формальдегида и взбалтывают содержимое пробирки. Нагревают над пламенем горелки до кипения только верхнюю часть раствора так, чтобы нижняя часть оставалась для контроля холодной. В нагретой части пробирки выделяется желтый осадок гидроксида меди (I) (СuОН), переходящий в красный оксид меди (I) (Сu2О), а иногда на стенках пробирки выделяется даже металлическая медь.

Химизм процесса:

CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4

2Cu(OH)2 + HCOH = HCOOH + Cu2O + 2H2O

Повторите этот опыт, заменив раствор формальдегида раствором этаналя.

Сформулируйте вывод по работе.

| Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Общая формула альдегидов:

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

— предельные; например:

— непредельные; например:

— ароматические; например:

— алициклические; например:

Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений — кетонам

например:

Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp2-гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости.

Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства

Химические свойства

Альдегиды — реакционноспособные соединения, вступающие в многочисленные реакции.

Наиболее характерны для альдегидов:

по карбонильной группе; реагенты типа НХ присоединяются следующим образом:

связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I.

Реакции присоединения

В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:

II.

уксусный альдегид cu oh 2

Реакции окисления

Упрощённо:

Эта реакция является (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).

Эта реакция также являетсяу (выпадает красный осадок Сu2O).

Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее — до Н2СO3(СO2 + Н2O):

III.

Реакции ди-, три- и полимеризации

3.

Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:

IV. Реакция поликонденсации формальдегида с фенолом

V.

Превращение формальдегида в углеводы

VI. Взаимодействие формальдегида с аммиаком

Способы получения

1.

Окисление алкенов

2. Каталитическое окисление первичных спиртов

3.

Окисление первичных спиртов различными окислителями (КМnО4, K2Cr2О7 и др.)

4. Каталитическое дегидрирование первичных спиртов

5.

Щелочной гидролиз дигалогеналканов, содержащих атомы галогена у первичного атома углерода.

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Специфические способы получения формальдегида и ацетальдегида

1.

Каталитическое окисление метана

2. Гидратация ацетилена (реакция Кучерова)

Понятие о альдегиды. Состав молекулы, электронная и структурная формулы.

Тема 3.2 Альдегиды и кетоны

Функциональная карбонильная группа

Альдегидами называют органические вещества, молекулы которых содержат функциональную группу атомов , соединенную с углеводородным радикалом.

Общая формула веществ этого класса CnH2n +1 COН или R-COН, в которой R — это атом водорода (в случае с Мурино альдегидом) или углеводородный радикал.

Группа атомов называется карбонильной группой, или карбонил.

Сравнению со спиртами в составе молекул альдегидов на два атома водорода меньше.

Это отражается в названии «альдегиды», что происходит от слов «алкоголь» и «дегидрирования», т.е. дегидрований алкоголь.

Первый член гомологического ряда альдегидов — метаналь, или формальдегид, или Мурино альдегид.

Он формулу .

Следующий за ним — этаналь, или ацетальдегид, или уксусный альдегид. Его формула .

По номенклатуре, исторически сложилась, названия альдегидов происходят от названий тех кислот, на которые они превращаются при окислении. Например, Мурино альдегид — от Мурино кислоты, уксусный альдегид — от уксусной кислоты и т. д. По систематической номенклатуре, названия альдегидов образуют от названий соответствующих предельных углеводородов путем добавления суффикса-аль: метаналь, этаналь, пропаналя т.д..

Формальдегид СН2=О (муравьиный альдегид, метаналь).

Представляет собой бесцветное горючее вещество с острым раздражающим запахом. Растворим в воде, обычно используется в виде 33-40 % водного раствора, который называют формалином. Вырабатывают формальдегид в больших количествах.

Он применяется в производстве пластмасс. Полиформальдегид с большим молекулярным весом – ценный синтетический материал, используемый в качестве заменителя металлов. В кожевенной промышленности формальдегид применяется для дубления кожи, в медицине и санитарии – для дезинфекции.

Ацетальдегид СН3-СН=О (уксусный альдегид, этаналь).

Представляет собой бесцветную легколетучую, легковоспламеняющуюся жидкость с сильным характерным запахом прелых яблок.

1. уксусный альдегид+ Ag₂O => (р. серебряного зеркала) 2. уксусный альдегид+2Cu(OH)₂ =>

Хорошо растворим в воде. Используют ацетальдегид для многих промышленных синтезов. Особенно важно окисление его в уксусную кислоту, превращение в этилацетат (по реакции Тищенко); может быть восстановлен в этиловый спирт.

Ацетон СН3-СО-СН3 (диметилкетон).

Бесцветная, легковоспламеняющаяся жидкость с довольно приятным запахом. Смешивается с водой. Ацетон является ценным растворителем (в производстве лаков, искусственного шелка, взрывчатых веществ) и исходным веществом в синтезе разнообразных органических соединений.

В последнее время в технике большое значение приобрело применение ацетона для получения так называемого кетена.

Кетен – газообразное вещество, очень реакционноспособное. Применяется для получения уксусного ангидрида и ряда других ценных продуктов, в частности, очень хорошего пищевого консерванта – сорбиновой кислоты.

Применение альдегидов.

Из альдегидов наибольшее применение имеет формальдегид.

Особенности применения формальдегида: используется обычно в виде водного раствора – формалина; многие способы применения формальдегида основаны на свойстве свертывать белки; в сельском хозяйстве формалин необходим для протравливания семян; формалин применяется в кожевенном производстве; формалин оказывает дубящее действие на белки кожи, делает их более твердыми, негниющими; формалин применяется также для сохранения биологических препаратов; при взаимодействии формальдегида с аммиаком получается широко известное лекарственное вещество уротропин.

Основная масса формальдегида идет на получение фенолформальдегидных пластмасс, из которых изготавливаются: а) электротехнические изделия; б) детали машин и др.

Ацетальдегид (уксусный альдегид) в больших количествах используется для производства уксусной кислоты.

Восстановлением ацетальдегида в некоторых странах получают этиловый спирт.

Получение альдегидов:

1) общим способом получения альдегидов служит окисление спиртов;

2) если накалить в пламени спиртовки спираль из медной проволочки и опустить ее в пробирку со спиртом, то проволочка, которая покрывается при нагревании темным налетом оксида меди (II), в спирте становится блестящей;

3) обнаруживается также запах альдегида.

С помощью такой реакции получается формальдегид в промышленности.

Для получения формальдегида через реактор с раскаленной сеткой из меди или серебра пропускается смесь паров метилового спирта с воздухом;

4) при лабораторном получении альдегидов для окисления спиртов могут быть использованы и другие окислители, например перманганат калия;

5) при образовании альдегида спирт, или алкоголь, подвергается дегидрированию.

Особенности реакции гидратации ацетилена:

а) сначала идет присоединение воды к ацетилену по месту одной π-связи;

б) образуется виниловый спирт;

в) непредельные спирты, в которых гидроксильная группа находится у атома углерода, который связан двойной связью, неустойчивы и легко изомеризуются;

г) виниловый спирт превращается в альдегид:

д) реакция легко осуществляется, если пропускать ацетилен в нагретую воду, которая содержит серную кислоту и оксид ртути (II);

е) через несколько минут в приемнике можно обнаружить раствор альдегида.

В последние годы разработан и получает распространение способ получения ацетальдегида окислением этилена кислородом в присутствии хлоридов палладия и меди.

Свойства

В химическом отношении это высоко реакционноспособные вещества, что обусловлено наличием в их молекуле карбонильной группы.

Высокая реакционная способность альдегидов объясняется:

а) наличием поляризованной двойной связи

б) дипольным моментом карбонила

в) наличием частичного положительного заряда на атоме углерода карбонила

Двойная связь между С и О, в отличие от двойной связи между двумя углеродами, сильно поляризована, так как кислород обладает значительно большей электроотрицательностью, чем углерод, и электронная плотность π-связи смещается к кислороду.

Такая высокая поляризация определяет электрофильные свойства углерода карбонильной группы и его способность реагировать с нуклеофильными соединениями (вступать в реакции нуклеофильного присоединения). Кислород группы обладает нуклеофильными свойствами.

Характерны реакции окисления и нуклеофильного присоединения

Билет 7

1) Аминокислоты - органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.

Простейший представитель - аминоуксусная кислота H2N-CH2-COOH (глицин)

Некоторые представители аминокислот:

1) аминоуксусная кислота Н2N-СН2-СООН;

2) аминопропионовая кислота Н2N-СН2-СН2-СООН;

3) аминомасляная кислота Н2N-СН2-СН2-СН2-СООН;

4) аминовалериановая кислота Н2N-(СН2)4-СООН;

5) аминокапроновая кислота Н2N-(СН2)5-СООН.

Чем больше атомов углерода в молекуле аминокислоты, тем больше может существовать изомеров с различным положением аминогруппы по отношению к карбоксильной группе.

6. Чтобы в названии изомеров можно было указывать положение группы – NH2 по отношению к карбоксилу, атомы углерода в молекуле аминокислоты обозначаются последовательно буквами греческого алфавита: а) ?-аминокапроновая кислота; б) ?-аминокапроновая кислота.

Получение

Аминокислоты получают различными методами, нек-рые из них предназначены специально для получения тех или иных А.

Наиболее распространенными общими методами химического синтеза А. являются следующие.

1. Аминирование галоидопроизводных органических кислот. На галоидопроизводное (обычно бромзамещенную кислоту) действуют аммиаком, в результате чего галоид замещается на аминогруппу.

Получение А. из альдегидов путем обработки их аммиаком и цианистым водородом или цианидами. В результате такой обработки получается циангидрин, к-рый далее аминируется, образуя аминонитрил; омыление последнего дает А.

3. Конденсация альдегидов с производными глицина с последующим восстановлением и гидролизом.

Отдельные А. могут быть получены из гидролизатов белков в виде труднорастворимых солей или других производных. Напр., цистин и тирозин легко осаждаются в изо электрической точке; диаминокислоты осаждают в виде солей фосфорно-вольфрамовой, пикриновой (лизин), флавпановой (аргинин) и других кислот; дикарбоновые А.

осаждают в виде кальциевых или бариевых солей, глутаминовая к-та выделяется в виде гидрохлорида в кислой среде, аспарагиновая к-та - в виде медной соли и т. д. Для препаративного выделения ряда А. из гидролизатов белка применяют также методы хроматографии и электрофореза.

Для промышленных целей многие А. получают методами микробиологического синтеза, выделяя их из культуральной среды определенных штаммов бактерий.

Свойства аминокислот

Для любого спортсмена важны не только тренировки, но и теоретическая подкованность, благодаря которой можно получать высокие результаты тренировок.

Для этого стоит знать свойства аминокислот, ведь этот вид спортивного питания является одним из наиболее востребованных.

Альдегиды и кетоны.

Альдегиды и кетоны имеют схожее химическое строение. Поэтому рассказ о них объединён в одной главе.


В строении обоих соединений прсутствует двухвалентная карбонильная группа:

Отличие альдегидов и кетонов следующее. В альдегидах карбонильная группа связана с одним атомом водорода и с углеводородным радикалом, в то время как в кетонах она связана с двумя углеводородными радикалами.


Химические свойства альдегидов и кетонов.

Наличие и в альдегидах и в кетонах карбонильной группы обуславливает определённое сходство их свойств. Однако имеются и различия. Это различие объясняется присутствием в молекуле альдегида атома водорода, связанного с карбонильной группой. (В молекуле кетонов подобный атом отсутствует).


Карбонильная группа и связанный с ней атом водорода, выделены в отдельную функциональную группу. Эта группа получила название альдегидной функциональной группы .



За счёт присутствия водорода в молекуле альдегида, последние легко окисляются (присоединяют кислород) и превращаются в карбоновые кислоты.


Например, при окислении уксусного альдегида образуется уксусная кислота:


Вследствии лёгкой окисляемости альдегиды являются энергичными восстановителями. Этим они существенно отличаются от кетонов, которые окисляются значительно труднее.

Получение альдегидов и кетонов.

Альдегиды и кетоны можно получить окислением соответствующих спиртов , имеющих тот же углеродный скелет и гидроксил при том же атоме углерода, который в получаемом альдегиде или кетоне образует карбонильную группу.


Если в качестве окисляемого спирта используется первичный спирт, то в результате окисления получится альдегид.

Муравьиный альдегид (формальдегид).

– это простейший альдегид с формулой:



Получают формальдегид из метилового спирта – простейшего из спиртов.


В формальдегиде в качестве радикала выступает атом водорода.


Свойства:

– это газ с резким неприятным запахом, хорошо растворимый в воде. Обладает антисептическими, а также дубящими свойствами.


Получение:

Получают формальдегид из метилового спирта путём каталитического окисления его кислородом воздуха или путём дегидрирования (отщеплением водорода).



Применение:

Водный раствор формальдегида (обычно 40%) называется формалином . Формалин широко прменяется для дизинфекции, консервирования анатомических препаратов. Значительные количества формальдегида используются для получения фенолформальдегидных смол.


Это один из наиболее важных альдегидов. Он соответствует этиловому спирту и может быть получен его окислением.



Уксусный альдегид широко встречается в природе и производится в больших количествах индустриально. Он присутствует в кофе, в спелых фруктах, хлебе, и синтезируется растениями как результат их метаболизма.


Свойства:

Уксусный альдегид – легко кипящая бесцветная жидкость (температура кипения 21 градуса С). Имеет характерный запах прелых яблок, хорошо растворим в воде.


Получение:

В прмышленности уксусный альдегид получается:

  1. окислением этилена,
  2. присоединением воды к ацетилену,
  3. окислением или дегидрированием этилового спирта.

Применение:

Применяют уксусный альдегид для получения уксусной кислоты, бутадиена, некоторых органических веществ, альдегидных полимеров.

Диметилкетон (ацетон).

Диметилкетон (ацетон ) является простейшим кетоном. В его молекуле роль углеводородных радикалов выполняет метил СН 3 (остаток метана).



Свойства:

Ацетон – бесцветная жидкость с характерным запахом.

Температура кипения 56,2 градуса С .

Ацетон смешивается с водой во всех соотношениях.

Является одним из метаболитов, производимых человеческим организмом.


Получение:

  1. Ацетон может быть получен окислением пропена,
  2. Используются методы получения ацетона из изопропилового спирта и ацетилена,
  3. Основную часть ацетона получают как сопродукт при получении фенола из бензола по кумольному способу.

Применение:

Ацетон – очень хороший растворитель многих органических веществ. Широко применяется в лакокрасочной промышленности, в производстве некоторых видов искусственного волокна, небъющегося органического стекла, киноплёнки, бездымного пороха. Ацетон также используется как исходное вещество для синтеза ряда органических соединений.