Линейная зависимость и независимость. Линейная зависимость и независимость, свойства, исследование системы векторов на линейную зависимость, примеры и решения Теорема о линейной независимости

Лемма 1 : Если в матрице размера n n хотя бы одна строка (столбец) равна нулю, то строки (столбцы) матрицы являются линейно зависимыми.

Доказательство: Пусть нулевой будет первая строка, тогда

где a 1 0 . Что и требовалось.

Определение: Матрица, у которой расположенные ниже главной диагонали элементы равны нулю, называется треугольной:

а ij = 0 , i>j.

Лемма 2: Определитель треугольной матрицы равен произведению элементов главной диагонали.

Доказательство нетрудно провести индукцией по размерности матрицы.

Теорема о линейной независимости векторов.

а) Необходимость : линейно зависимы D=0 .

Доказательство: Пусть линейно зависимы, j= ,

то есть, существует a j , не все равные нулю, j= , что a 1 А 1 + a 2 А 2 + ... a n A n = , А j – столбцы матрицы А. Пусть, например, a n ¹0 .

Имеем a j * = a j / a n , j£ n-1a 1 * А 1 + a 2 * А 2 + ... a n -1 * A n -1 + A n = .

Заменим последний столбец матрицы А на

А n * = a 1 * А 1 + a 2 * А 2 + ... a n -1 A n -1 + A n = .

Согласно выше доказанному свойству определителя (он не изменится, если в матрице к любому столбцу прибавить другой, умноженный на число) определитель новой матрицы равен определителю исходной. Но в новой матрице один столбец нулевой, значит, разлагая определитель по этому столбцу, получим D=0, что и требовалось доказать.

б) Достаточность: Матрицу размера n n с линейно независимыми строками всегда можно привести к треугольному виду с помощью преобразований, не меняющих абсолютной величины определителя. При этом из независимости строк исходной матрицы следует неравенство нулю её определителя.

1. Если в матрице размера n n с линейно независимыми строками элемент а 11 равен нулю, то на первое место следует переставить столбец, у которого элемент а 1 j ¹ 0 . Согласно лемме 1 такой элемент найдется. Определитель преобразованной матрицы при этом может отличаться от определителя исходной матрицы только знаком.

2. От строк с номерами i>1 отнимем первую строку, умноженную на дробь a i 1 /a 11 . При этом в первом столбце строк с номерами i>1 получатся нулевые элементы.

3. Начнем вычислять определитель полученной матрицы разложением по первому столбцу. Посколькув нем все элементы, кроме первого, равны нулю,

D нов = a 11 нов (-1) 1+1 D 11 нов,

где d 11 нов – определитель матрицы меньшего размера.

Далее для вычисления определителя D 11 повторяем пункты 1, 2, 3 до тех пор, пока последний определитель не окажется определителем от матрицы размера 1 1. Поскольку п.1 меняет только знак определителя преобразуемой матрицы, а п.2 вообще не меняет величины определителя, то, с точностью до знака, в итоге получим определитель исходной матрицы. При этом, поскольку из-за линейной независимости строк исходной матрицы п.1 всегда выполним, все элементы главной диагонали получатся неравными нулю. Таким образом, итоговый определитель согласно изложенному алгоритму равен произведению ненулевых элементов, стоящих на главной диагонали. Поэтому и определитель исходной матрицы не равен нулю. Что и требовалось доказать.


Приложение 2

Следующие дают несколько критериев линейной зависимости и соответственно линейной независимости систем векторов.

Теорема. (Необходимое и достаточное условие линейной зависимости векторов.)

Система векторов является зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие этой системы.

Доказательство. Необходимость. Пусть система линейно зависимая. Тогда, по определению, она представляет нулевой вектор нетривиально, т.е. существует нетривиальная комбинация данной системы векторов равная нулевому вектору:

где хотя бы один из коэффициентов этой линейной комбинации не равен нулю. Пусть , .

Разделим обе части предыдущего равенства на этот ненулевой коэффициент (т.е. умножим на :

Обозначим: , где .

т.е. один из векторов системы линейно выражается через другие этой системы, ч.т.д.

Достаточность. Пусть один из векторов системы линейно выражается через другие вектора этой системы:

Перенесем вектор в правую этого равенства:

Так как коэффициент при векторе равен , то мы имеем нетривиальное представление нуля системой векторов , что означает, что эта система векторов является линейно зависимой, ч.т.д.

Теорема доказана.

Следствие.

1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.

2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Доказательство.

1) Необходимость. Пусть система линейно независимая. Допустим противное и существует вектор системы линейно выражающийся через другие вектора этой системы. Тогда по теореме система является линейно зависимой и мы приходим к противоречию.

Достаточность. Пусть ни один из векторов системы не выражается через другие. Допустим противное. Пусть система линейно зависимая, но тогда из теоремы следует, что существует вектор системы линейно выражающийся через другие векторы этой системы и мы опять приходим к противоречию.

2а) Пусть система содержит нулевой вектор. Допустим для определенности, что вектор :. Тогда очевидно равенство

т.е. один из векторов системы линейно выражается через другие вектора этой системы. Из теоремы следует, что такая система векторов является линейно зависимой, ч.т.д.

Заметим, что этот факт можно доказать непосредственно из линейно зависимой системы векторов.

Так как , то следующее равенство очевидно

Это нетривиальное представление нулевого вектора, а значит система является линейно зависимой.

2б) Пусть система имеет два равных вектора. Пусть для . Тогда очевидно равенство

Т.е. первый вектор линейно выражается через остальные векторы этой же системы. Из теоремы следует, что данная система линейно зависимая, ч.т.д.

Аналогично предыдущему это утверждение можно доказать и непосредственно определения линейно зависимой системы.. Тогда эта система представляет нулевой вектор нетривиально

откуда следует линейная зависимость системы .

Теорема доказана.

Следствие. Система, состоящая из одного вектора является линейно независимой тогда и только тогда, когда этот вектор ненулевой.

Пусть L – линейное пространство над полем Р . Пусть А1, а2, … , аn (*) конечная система векторов из L . Вектор В = a1×А1 + a2×А2 + … + an×Аn (16) называется Линейной комбинацией векторов ( *), или говорят, что вектор В линейно выражается через систему векторов (*).

Определение 14. Система векторов (*) называется Линейно зависимой , тогда и только тогда, когда существует такой ненулевой набор коэффициентов a1, a2, … , an, что a1×А1 + a2×А2 + … + an×Аn = 0. Если же a1×А1 + a2×А2 + … + an×Аn = 0 Û a1 = a2 = … = an = 0, то система (*) называется Линейно независимой.

Свойства линейной зависимости и независимости.

10. Если система векторов содержит нулевой вектор, то она линейно зависима.

Действительно, если в системе (*) вектор А1 = 0, То 1×0 + 0×А2 + … + 0 ×Аn = 0 .

20. Если система векторов содержит два пропорциональных вектора, то она линейно зависима.

Пусть А1 = L ×а2. Тогда 1×А1 –l×А2 + 0×А3 + … + 0×А N = 0.

30. Конечная система векторов (*) при n ³ 2 линейно зависима тогда и только тогда, когда хотя бы один из её векторов является линейной комбинацией остальных векторов этой системы.

Þ Пусть (*) линейно зависима. Тогда найдётся ненулевой набор коэффициентов a1, a2, … , an, при котором a1×А1 + a2×А2 + … + an×Аn = 0 . Не нарушая общности, можно считать, что a1 ¹ 0. Тогда существует и А1 = ×a2×А2 + … + ×an×А N. Итак, вектор А1 является линейной комбинацией остальных векторов.

Ü Пусть один из векторов (*) является линейной комбинацией остальных. Можно считать, что это первый вектор, т. е. А1 = B2А2 + … + bnА N, Отсюда (–1)×А1 + b2А2 + … + bnА N = 0 , т. е. (*) линейно зависима.

Замечание. Используя последнее свойство, можно дать определение линейной зависимости и независимости бесконечной системы векторов.

Определение 15. Система векторов А1, а2, … , аn , … (**) называется Линейно зависимой, Если хотя бы один её вектор является линейной комбинацией некоторого конечного числа остальных векторов. В противном случае система (**) называется Линейно независимой.

40. Конечная система векторов линейно независима тогда и только тогда, когда ни один из её векторов нельзя линейно выразить через остальные её векторы.

50. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

60. Если некоторая подсистема данной системы векторов линейно зависима, то и вся система тоже линейно зависима.

Пусть даны две системы векторов А1, а2, … , аn , … (16) и В1, в2, … , вs, … (17). Если каждый вектор системы (16) можно представить в виде линейной комбинации конечного числа векторов системы (17), то говорят, что система (17) линейно выражается через систему (16).

Определение 16. Две системы векторов называются Эквивалентными , если каждая из них линейно выражается через другую.

Теорема 9 (основная теорема о линейной зависимости).

Пусть и – две конечные системы векторов из L . Если первая система линейно независима и линейно выражается через вторую, то N £ s.

Доказательство. Предположим, что N > S. По условию теоремы

(21)

Так как система линейно независима, то равенство (18) Û Х1=х2=…=х N= 0. Подставим сюда выражения векторов : …+=0 (19). Отсюда (20). Условия (18), (19) и (20), очевидно, эквивалентны. Но (18) выполняется только при Х1=х2=…=х N= 0. Найдём, когда верно равенство (20). Если все его коэффициенты равны нулю, то оно, очевидно, верно. Приравняв их нулю, получим систему (21). Так как эта система имеет нулевое , то она

совместна. Так как число уравнений больше числа неизвестных, то система имеет бесконечно много решений. Следовательно, у неё есть ненулевое Х10, х20, …, х N0 . При этих значениях равенство (18) будет верно, что противоречит тому, что система векторов линейно независима. Итак, наше предположение не верно. Следовательно, N £ s.

Следствие. Если две эквивалентные системы векторов конечны и линейно независимы, то они содержат одинаковое число векторов.

Определение 17. Система векторов называется Максимальной линейно независимой системой векторов Линейного пространства L , если она линейно независима, но при добавлении к ней любого вектора из L , не входящего в эту систему, она становится уже линейно зависимой.

Теорема 10. Любые две конечные максимальные линейно независимые системы векторов из L Содержат одинаковое число векторов.

Доказательство следует из того, что любые две максимальные линейно независимые системы векторов эквивалентны.

Легко доказать, что любую линейно независимую систему векторов пространства L можно дополнить до максимальной линейно независимой системы векторов этого пространства.

Примеры:

1. Во множестве всех коллинеарных геометрических векторов любая система, состоящая их одного ненулевого вектора, является максимальной линейно независимой.

2. Во множестве всех компланарных геометрических векторов любые два неколлинеарных вектора составляют максимальную линейно независимую систему.

3. Во множестве всех возможных геометрических векторов трёхмерного евклидова пространства любая система трёх некомпланарных векторов является максимальной линейно независимой.

4. Во множестве всех многочленов степени не выше N С действительными (комплексными) коэффициентами система многочленов 1, х, х2, … , хn Является максимальной линейно независимой.

5. Во множестве всех многочленов с действительными (комплексными) коэффициентами примерами максимальной линейно независимой системы являются

а) 1, х, х2, … , хn, … ;

б) 1, (1 – х ), (1 – х )2, … , (1 – х )N, …

6. Множество матриц размерности M ´ N является линейным пространством (проверьте это). Примером максимальной линейно независимой системы в этом пространстве является система матриц Е11 = , Е12 =, … , Е Mn = .

Пусть дана система векторов С1, с2, … , ср (*). Подсистема векторов из (*) называется Максимальной линейно независимой Подсистемой Системы ( *) , если она линейно независима, но при добавлении к ней любого другого вектора этой система она становится линейно зависимой. Если система (*) конечна, то любая её максимальная линейно независимая подсистема содержит одно и то же число векторов. (Доказательство проведите самостоятельно). Число векторов в максимальной линейно независимой подсистеме системы (*) называется Рангом Этой системы. Очевидно, эквивалентные системы векторов имеют одинаковые ранги.

Теорема 1.(О линейной независимости ортогональных векторов). Пусть Тогда система векторов линейно независима.

Составим линейную комбинацию ∑λ i x i =0 и рассмотрим скалярное произведение (x j , ∑λ i x i)=λ j ||x j || 2 =0, но ||x j || 2 ≠0⇒λ j =0.

Определение 1. Система векторов или (e i ,e j)=δ ij - символ Кронекера, называется ортонормированной (ОНС).

Определение 2. Для произвольного элемента x произвольного бесконечномерного евклидова пространства и произвольной ортонормированной системы элементов рядом Фурье элемента x по системе называется формально составленная бесконечная сумма (ряд) вида , в которой действительные числа λ i называются коэффициентами Фурье элемента x по системе , где λ i =(x,e i).

Комментарий. (Естественно, возникает вопрос о сходимости этого ряда. Для исследования этого вопроса зафиксируем произвольный номер n и выясним, что отличает n-ю частичную сумму ряда Фурье от любой другой линейной комбинации первых n элементов ортонормированной системы . )

Теорема 2. Для любого фиксированного номера n среди всех сумм вида наименьшее отклонение от элемента x по норме данного евклидова пространства имеет n-я частичная сумма ряда Фурье элементa

Учитывая ортонормированность системы и определение коэффициента Фурье, можно записать


Минимум этого выражения достигается при c i =λ i , так как при этом всегда неотрицательная первая сумма в правой части обращается в нуль, а остальные слагаемые от c i не зависят.

Пример. Рассмотрим тригонометрическую систему

в пространстве всех интегрируемых по Риману функций f(x) на сегменте [-π,π]. Легко проверить, что это ОНС, и тогда Ряд Фурье функции f(x) имеет вид где .

Комментарий. (Тригонометрический ряд Фурье обычно записывают в виде Тогда )

Произвольная ОНС в бесконечномерном эвклидовом пространстве без дополнительных предположений, вообще говоря, не является базисом этого пространства. На интуитивном уровне, не давая строгих определений, опишем суть дела. В произвольном бесконечномерном эвклидовом пространстве E рассмотрим ОНС , где (e i ,e j)=δ ij - символ Кронекера. Пусть M - подпространство эвклидова пространства, а k=M ⊥ - подпространство, ортогональное к M, такое, что эвклидово пространство E=M+M ⊥ . Проекция вектора x∈E на подпространство M - вектор ∈M, где


Мы будем искать те значения коэффициентов разложения α k , при которых невязка (квадрат невязки) h 2 =||x-|| 2 будет минимальна:

h 2 =||x-|| 2 =(x-,x-)=(x-∑α k e k ,x-∑α k e k)=(x,x)-2∑α k (x,e k)+(∑α k e k ,∑α k e k)=||x|| 2 -2∑α k (x,e k)+∑α k 2 +∑(x,e k) 2 -∑(x,e k) 2 =||x|| 2 +∑(α k -(x,e k)) 2 -∑(x,e k) 2 .

Ясно, что это выражение будет принимать минимальное значение при α k =0, что тривиально, и при α k =(x,e k). Тогда ρ min =||x|| 2 -∑α k 2 ≥0. Отсюда получаем неравенство Бесселя ∑α k 2 &38804;||x|| 2 . При ρ=0 ортонормированная система векторов (ОНС) называется полной ортонормированной системой в смысле Стеклова (ПОНС). Отсюда можно получить равенство Стеклова - Парсеваля ∑α k 2 =||x|| 2 - "теорему Пифагора" для полных в смысле Стеклова бесконечномерных эвклидовых пространств. Теперь следовало бы доказать, что для того, чтобы любой вектор пространства можно было единственным образом представить в виде сходящегося к нему ряда Фурье, необходимо и достаточно выполнение равенства Стеклова-Парсеваля. Система векторов pic=""> ОНБ образует?система векторов Рассмотрим для частичную сумму ряда Тогда как хвост сходящегося ряда. Таким образом, система векторов является ПОНС и образует ОНБ.

Пример. Тригонометрическая система

в пространстве всех интегрируемых по Риману функций f(x) на сегменте [-π,π] является ПОНС и образует ОНБ.

Функции называются линейно независимыми, если

(допустима только тривиальная линейная комбинация функций, тождественно равная нулю). В отличие от линейной независимости векторов здесь тождество линейной комбинации нулю, а не равенство. Это и понятно, так как равенство линейной комбинации нулю должно быть выполнено при любом значении аргумента.

Функции называются линейно зависимыми, если существует не нулевой набор констант (не все константы равны нулю) , такой что (существует нетривиальная линейная комбинация функций, тождественно равная нулю).

Теорема. Для того чтобы функции были линейно зависимы, необходимо и достаточно, чтобы какая-либо из них линейно выражалась через остальные (представлялась в виде их линейной комбинации).

Докажите эту теорему самостоятельно, она доказывается так же, как аналогичная ей теорема о линейной зависимости векторов.

Определитель Вронского.

Определитель Вронского для функций вводится как определитель, столбцами которого являются производные этих функций от нулевого (сами функции) до n-1 го порядка.

.

Теорема . Если функции линейно зависимы, то

Доказательство. Так как функции линейно зависимы, то какая-либо из них линейно выражается через остальные, например,

Тождество можно дифференцировать, поэтому

Тогда первый столбец определителя Вронского линейно выражается через остальные столбцы, поэтому определитель Вронского тождественно равен нулю.

Теорема. Для того, чтобы решения линейного однородного дифференциального уравнения n-ого порядка были линейно зависимы, необходимо и достаточно, чтобы .

Доказательство. Необходимость следует из предыдущей теоремы.

Достаточность. Зафиксируем некоторую точку . Так как , то столбцы определителя, вычисленные в этой точке, представляют собой линейно зависимые векторы.

, что выполнены соотношения

Так как линейная комбинация решений линейного однородного уравнения является его решением, то можно ввести решение вида

Линейную комбинацию решений с теми же коэффициентами.

Заметим, что при это решение удовлетворяет нулевым начальным условиям, это следует из выписанной выше системы уравнений. Но тривиальное решение линейного однородного уравнения тоже удовлетворяет тем же нулевым начальным условиям. Поэтому из теоремы Коши следует, что введенное решение тождественно равно тривиальному, следовательно,

поэтому решения линейно зависимы.

Следствие. Если определитель Вронского, построенный на решениях линейного однородного уравнения, обращается в нуль хотя бы в одной точке, то он тождественно равен нулю.

Доказательство. Если , то решения линейно зависимы, следовательно, .

Теорема. 1. Для линейной зависимости решений необходимо и достаточно (или ).

2. Для линейной независимости решений необходимо и достаточно .

Доказательство. Первое утверждение следует из доказанной выше теоремы и следствия. Второе утверждение легко доказывается от противного.

Пусть решения линейно независимы. Если , то решения линейно зависимы. Противоречие. Следовательно, .

Пусть . Если решения линейно зависимы, то , следовательно, , противоречие. Поэтому решения линейно независимы.

Следствие. Обращение определителя Вронского в нуль хотя бы в одной точке является критерием линейной зависимости решений линейного однородного уравнения.

Отличие определителя Вронского от нуля является критерием линейной независимости решений линейного однородного уравнения.

Теорема. Размерность пространства решений линейного однородного уравнения n-ого порядка равна n.

Доказательство.

a) Покажем, что существуют n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка. Рассмотрим решения , удовлетворяющие следующим начальным условиям:

...........................................................

Такие решения существуют. В самом деле, по теореме Коши через точку проходит единственная интегральная кривая – решение. Через точку проходит решение , через точку

- решение , через точку - решение .

Эти решения линейно независимы, так как .

b) Покажем, что любое решение линейного однородного уравнения линейно выражается через эти решения (является их линейной комбинацией).

Рассмотрим два решения. Одно - произвольное решение с начальными условиями . Справедливо соотношение