Расположение гиперболы. Гипербола и ее свойства

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

1. Гипербола лежит за полосой со сторонами x = ± a .

Действительно, согласно уравнению гиперболы, имеет место неравенство

2. Гипербола является симметричной относительно начала координат и относительно координатных осей. Это вытекает из того, что в уравнение гиперболы переменные x и y входят в квадратах х 2 и у 2 , и уравнению гиперболы удовлетворяют точки с координатами (х , у ),

(− х , у ), (х , − у ), (− х , − у ).

3. Гипербола имеет две асимптоты

к которым приближаются точки гиперболы при удалении их от начала координат.

4. Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) - центром гиперболы. Одна из осей пересекается с гиперболой в двух точках А и С, которые называются ее вершинами. Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы. Величины а и b называются, соответственно, действительной и мнимой полуосями.

5. Гипербола с равными полуосями а = b называется равносторонней и ее каноническое уравнение имеет вид

x 2 − y 2 = a 2 .

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Эксцентриситет гиперболы (как и эллипса) обозначим буквой ε. Так как с > а : то ε > 1, т. е. эксцентриситет гиперболы больше единицы. Очевидно,

Из последнего равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b a , а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а, значит, и форму самой гиперболы.

В случае равносторонней гиперболы (a = b ) ε = √2.

ОПР 2. . Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии а ⁄ ε от него, называются директрисами гиперболы.

Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной ε, является эллипсом, если ε < 1, и гиперболой, если ε > 1.

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .

Определение 1

Гипербола в математике – это множество всех точек на плоскости, для любой из которых абсолютная разность расстояния между двумя точками $F_1$ и $F_2$, называемыми фокусами, всегда равна одному и тому же значению и равна $2a$.

Рисунок 1. Как выглядит гипербола: пример гиперболы

Свойства гиперболы

  • Если точки $F_1$ и $F_2$ являются фокусами гиперболы, то касательная, проведённая через любую точку $A$, принадлежащую кривой, является биссектрисой угла $F_1AF_2$;
  • Отношение расстояний от точки на гиперболе до фокуса и от этой же точки до директрисы – это константа, называемая эксцентриситетом $ε$;
  • Гиперболе свойственна зеркальная симметричность относительно действительной и мнимой осей, а также вращательная к центру при повороте на 180°;
  • Ограниченный действительными осями отрезок касательной, проведённой через точку $M$, делится пополам точкой $M$;
  • У каждой гиперболы есть сопряжённая гипербола, которая располагается в незанятых четвертях графика.

Основные определения

  • Ветви гиперболы – это две непересекающиеся кривые;
  • Вершинами гиперболы называются две ближайшие точки на разных ветвях гиперболы;
  • Формула для определения расстояния между вершинами гиперболы выглядит как $2\cdot a$;
  • Большой действительной осью называется прямая, проложенная через две ближайшие точки на гиперболе. На половине этого расстояния расположен центр гиперболы;
  • Полуосями гиперболы называется половина расстояния между вершинами гиперболы, формула для его определения $2\cdot a/2 = a$;
  • Мнимая ось – это прямая, проложенная через центр гиперболы и перпендикулярная действительной оси;
  • Геометрическое построение гиперболы производится по заданным вершинам и фокусам с помощью циркуля.

Уравнение гиперболы

Общая формула гиперболы и функция гиперболы описывается следующим уравнением: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где $a, b$ - положительные действительные числа.

Уравнение вырожденной гиперболы выглядит как уравнение двух асимтот к гиперболе: $\frac{x}{a} - \frac{y}{b} = 0$

Уравнение гиперболы со смещенным центром $\frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1$, где $x_0, y_0$ - координаты центра гиперболы.

Для нахождения уравнения смещенной гиперболы по графику сначала определяют смещение центра относительно оси координат, оно равно координатам центра. Затем по асимтоптам определяют значения $a$ и $b$.

Гиперболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры гиперболы:

Точки F 1 (–c, 0), F 2 (c , 0), где называются фокусами гиперболы, при этом величина 2с (с > a > 0) определяет междуфокусное расстояние . Точки А 1 (–а , 0), А 2 (а , 0) называются вершинами гиперболы , при этом А 1 А 2 = 2а образует действительную ось гиперболы, а В 1 В 2 = 2b мнимую ось (В 1 (0, –b ), B 2 (0, b )), О центр гиперболы.


Величина называется эксцентриситетом гиперболы, она характеризует меру «сжатости» гиперболы;

фокальные радиусы гиперболы (точка М принадлежит гиперболе), причем r 1 = a + εx , r 2 = –a + εx для точек правой ветви гиперболы, r 1 = – (a + εx ), r 2 = – (–a + εx ) – для точек левой ветви;

директрисы гиперболы;

уравнения асимптот .

Для гиперболы справедливо: ε > 1, директрисы не пересекают границу и внутреннюю область гиперболы, а также обладают свойством

Говорят, что уравнение

задает уравнение гиперболы, сопряженной данной (рис. 20). Его можно записать также в виде

В таком случае ось мнимая, фокусы лежат на оси . Все остальные параметры определяются аналогично как для гиперболы (25).


Точки гиперболы обладают важным характеристическим свойством: абсолютное значение разности расстояний от каждой из них до фокусов есть величина постоянная, равная 2a (рис. 19).

Для параметрического задания гиперболы в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на гиперболе, и положительным направлением оси Ox :

Пример 1. Привести уравнение гиперболы

9x 2 – 16y 2 = 144

к каноническому виду, найти еепараметры, изобразить гиперболу.

Решение. Разделим левую и правую части заданного уравнения на 144: Из последнего уравнения непосредственно следует: a = 4, b = 3, c = 5, O (0, 0) – центр гиперболы. Фокусы находятся в точках F 1 (–5, 0) и F 2 (5, 0), эксцентриситет ε = 5/4, директрисы D 1 и D 2 описываются уравнениями D 1: x = –16/5, D 2: x = 16/5, асимптоты l 1 и l 2 имеют уравнения

Сделаем чертеж. Для этого по осям Ox и Oy симметрично относительно точки (0, 0) отложим отрезки А 1 А 2 = 2а = 8 и В 1 В 2 = 2b = 6 соответственно. Через полученные точки А 1 (–4, 0), А 2 (4, 0), В 1 (0, –3), В 2 (0, 3) проведем прямые, параллельные координатным осям. В результате получим прямоугольник (рис. 21), диагонали которого лежат на асимптотах гиперболы. Строим гиперболу




Для нахождения угла φ между асимптотами гиперболы воспользуемся формулой

.

,

откуда получаем

Пример 2. Определить тип, параметры и расположение на плоскости кривой, уравнение которой

Решение. С помощью метода выделения полных квадратов упростим правую часть данного уравнения:

Получаем уравнение

которое делением на 30 приводится к виду

Это уравнение гиперболы, центр которой лежит в точке действительная полуось – мнимая полуось – (рис. 22).


Пример 3. Составить уравнение гиперболы, сопряженной относительно гиперболы определить ее параметры и сделать чертеж.

Решение. Уравнение гиперболы, сопряженной данной, –

Действительная полуось b = 3, мнимая – а = 4, половина междуфокусного расстояния Вершинами гиперболы служат точки B 1 (0, –3) и В 2 (0, 3); ее фокусы находятся в точках F 1 (0, –5) и F 2 (0, 5); эксцентриситет ε = с /b = 5/3; директрисы D 1 и D 2 задаются уравнениями D 1: y = –9/5, D 2: y = 9/5; уравнения являются уравнениями асимптот (рис. 23).


Заметим, что для сопряженных гипербол общими элементами являются вспомогательный «прямоугольник» и асимптоты.

Пример 4. Написать уравнение гиперболы с полуосями a и b (a > 0, b > 0), если известно, что ее главные оси параллельны координатным осям. Определить основные параметры гиперболы.

Решение. Искомое уравнение можно рассматривать как уравнение гиперболы которое получается в результате параллельного переноса старой системы координат на вектор где (x 0 , y 0) – центр гиперболы в «старой» системе координат. Тогда, используя соотношения между координатами произвольной точки М плоскости в заданной и преобразованной системах