Результат интерференции зависит от. Что такое интерференция и дифракция? Интерференция света с разной поляризацией

В каждой точке две распространяющиеся в пространстве волны дают геометрическую сумму своих колебаний. Этот принцип называется суперпозицией волн. Указанный закон соблюдается с невероятной точностью. Однако в редких случаях он может игнорироваться. Это касается ситуаций, при которых волны распространяются в сложных средах, когда их интенсивность (амплитуда) становится очень большой. Данный принцип означает, что на некоторое количество электромагнитных волн, распространяющихся в определенной среде, сама среда откликается совершенно конкретным образом - она реагирует только на одну волну, как будто других рядом нет. Математически это значит, что в любой точке выбранной среды напряженность и индукция электромагнитного поля будут равны векторной сумме магнитных индукций и напряженностей всех совокупных полей. Вследствие принципа суперпозиции электромагнитных волн возникают такие явления, как дифракция и интерференция света. Они интересны с физической точки зрения, кроме того, поражают своей красотой.

Что такое интерференция?

Рассматривать данное явление можно только с соблюдением специальных условий. Интерференция света - это образование полос ослабления и усиления, которые чередуются друг с другом. Одним из важных условий является наложение электромагнитных волн (пучков света) друг на друга, причем их количество должно быть от двух и более. Стоячая волна является частным случаем. Необходимо заметить, что интерференция - это сугубо волновой эффект, применимый не только к свету. В стоячей волне, которая и образуется благодаря наложению на отраженную или падающую волну, наблюдаются максимумы (пучности) и минимумы (узлы) интенсивности, которые чередуются друг с другом.

Основные условия

Интерференция волн обусловлена их когерентностью. Что означает этот термин? Когерентность - это согласованность волн по фазе. Если две волны, которые идут от разных источников, наложить друг на друга, то их фазы будут меняться беспорядочно. Световые волны являются следствием излучения атомов, поэтому каждая из них - это результат наложения огромного количества составляющих.

Минимумы и максимумы

Для появления «правильных» усилений и ослаблений суммарных волн в пространстве необходимо, чтобы складываемые составляющие в выбранной точке друг друга гасили. То есть длительное время электромагнитные волны должны были бы находиться в противофазе, чтобы разность фаз постоянно оставалась одинаковой. Максимум же появляется в момент нахождения составляющих волн в одной фазе, то есть когда они усиливаются. Интерференция света наблюдается при условии постоянной разности фаз в данной точке. И такие волны называются когерентными.

Естественные источники

Когда можно наблюдать такое явление, как интерференция света? Излучаемые электромагнитные волны от естественных источников некогерентны, потому что они беспорядочно создаются разными атомами, обычно совершенно несогласованными друг с другом. Каждая выпущенная атомом отдельная волна представляет собой отрезок синусоиды, абсолютно когерентный сам с собой. Таким образом, необходимо разделить на два и более пучков один поток света, который идет от источника, а затем наложить получившиеся друг на друга. В этом случае мы сможем наблюдать минимумы и максимумы такого явления, как интерференция света.

Наблюдение за наложением волн

Как уже говорилось выше, интерференция света - это очень широкое понятие, при котором результат сложения световых пучков по интенсивности не равен интенсивности отдельных пучков. В результате этого явления имеет место перераспределение энергии в пространстве - образуются те самые минимумы и максимумы. Именно поэтому интерференционная картина - это просто чередование темных и светлых полос. Если использовать белый свет, то полосы будут окрашены в самые разные цвета. Но когда в обычной жизни мы встречаем интерференцию света? Это происходит довольно часто. К ее проявлениям можно отнести масляные пятна на асфальте, мыльные пузыри с их радужными переливами, игру света на поверхности закаленного металла, рисунки на крылышках стрекозы. Это все интерференция света в тонких пленках. В действительности наблюдать этот эффект не так просто, как может показаться. Если горят две совершенно одинаковые лампы, то их интенсивности складываются. Но почему же нет эффекта интерференции? Ответ на этот вопрос заключается в отсутствии у такого наложения важнейшего условия - когерентности волн.

Бипризма Френеля

Для получения интерференционной картины возьмем источник, который является узкой освещенной щелью, установленной параллельно ребру самой бипризмы. Идущая от него волна будет раздваиваться благодаря преломлению в половинах бипризмы и доходить до экрана двумя различными путями, то есть иметь разность хода. На экране, в той его части, где и происходит перекрытие пучков света от половин бипризмы, появляются чередующиеся темные и светлые полосы. Разность хода ограничена по некоторым соображениям. В каждом акте излучения атом выпускает так называемый волновой цуг (системы электромагнитных волн), который распространяется в пространстве и времени, сохраняя свою синусоидальность. Длительность этого цуга ограничивается затуханием собственных колебаний частички (электрона) в атоме и столкновениям данного атома с другими. Если пропускать через бипризму белый свет, то можно увидеть цветную интерференцию, как это было и с тонкими пленками. Если же свет монохроматический (от дугового разряда в каком-либо газе), то интерференционная картинка будет представлять собой просто светлые и темные полосы. Это означает, что длины волн у разных цветов различны, то есть свет разного цвета и характеризуется разностью длин волн.

Получение наложенных волн

Идеальный источник света - это лазер (генератор квантов), который является по своей природе когерентным источником вынужденных излучений. Длина когерентного лазерного цуга может достигать тысяч километров. Именно благодаря генераторам квантов ученые создали целую область современной оптики, которую и назвали когерентной. Этот раздел физики является невероятно перспективным в плане технических и теоретических достижений.

Области применения эффекта

В широком смысле понятие «интерференция света» - это модуляция в пространстве потока энергии и его состояния излучения (поляризации) в области пересечения нескольких электромагнитных волн (двух и более). Но где используют такой эффект? Применение интерференции света возможно в самых различных областях технологий и промышленности. Например, это явление используют для того, чтобы осуществлять прецизионный контроль поверхностей обработанных изделий, а также механических и тепловых напряжений в деталях, измерять объемы различных объектов. Также интерференция света нашла применение в микроскопии, в спектроскопии инфракрасного и оптического излучения. Это явление лежит в основе современной трехмерной голографии, активной спектроскопии комбинационного рассеяния. В основном интерференцию, как видно из примеров, используют для высокоточных измерений и вычисления показателей преломления в разных средах.

Разглядывая сияющее голографическое изображение, большинство из нас вряд ли вспоминает физические термины «дифракция» и «интерференция световых волн» .


Но именно благодаря изучению этих понятий появилась возможность создавать голограммы.

Что такое дифракция света?

Слово «дифракция» образовано от латинского «diffractus» , что означает в дословном переводе «огибание волнами препятствия» . Как известно, имеет волновую природу, и его лучи подчиняются волновым законам. Дифракцией в физике называют оптические явления, возникающие, когда световые волны распространяются в оптически неоднородной среде с непрозрачными включениями.

Волновая природа света определяет его поведение при огибании препятствий. Если препятствие во много раз больше длины световой волны, свет не огибает его, образуя зону тени. Но в случаях, когда размеры препятствий соразмерны с длиной волны, возникает явление дифракции. В принципе, любое отклонение от геометрических оптических законов можно отнести к дифракции.

Интерференция волн

Если мы установим перед источником света непрозрачный экран и проделаем в нём точечное отверстие, то проникающие через эту точку лучи света на следующем экране, расположенном параллельно первому, отобразятся в виде концентрических колец с чередованием светлых и тёмных окружностей. Это явление в физике называют дифракцией Френеля, по имени учёного, который впервые обнаружил его и описал.

Изменив форму отверстия и сделав его щелеобразным, мы получим на втором экране другую картину. Световые лучи расположатся в виде ряда светлых и тёмных полосок, как на магазинном штрих-коде. Дифракцию света на щелеобразном отверстии впервые описал немецкий физик Фраунгофер, именем которого она называется до сих пор.


Объяснить разложение световой волны на светлые и тёмные участки учёные смогли при помощи понятия интерференции. Несколько источников волновых колебаний, если частоты их колебаний когерентны (одинаковы либо кратны друг другу), могут усиливать излучение друг друга, но могут и ослаблять, в зависимости от совпадения фаз колебаний. При огибании препятствий и возникновении вторичных волн вступает в действие их интерференция. На участках, где фазы волн совпадают, наблюдается повышенная освещённость (яркие светлые полоски либо окружности), а там, где не совпадают – освещённость снижена (тёмные участки).

Дифракционная решётка

Если взять прозрачную пластинку и нанести на неё ряд параллельных непрозрачных чёрточек на одинаковом расстоянии друг от друга, то мы получим дифракционную решётку. При пропускании через неё плоского светового фронта образуется дифракция на непрозрачных штрихах. Вторичные волны, взаимно ослабляясь и усиливаясь, образуют дифракционные минимумы и максимумы, что легко обнаружить на экране, поставленном за решёткой.

При этом происходит не только отклонение световых лучей, но и разложение белого света на цветовые спектральные составляющие. В природе нужная для маскировки окраска крыльев бабочек, оперения птиц, змеиной чешуи часто образуется благодаря использованию дифракционных и интерференционных оптических явлений, а не из-за пигментов.

Голограммы

Принцип голограммы был изобретён в 1947 году физиком Д. Габором, который впоследствии получил за его изобретение Нобелевскую премию. Трёхмерное, т.е. объёмное изображение объекта можно снять и записать, а затем воспроизвести, если использовать лазерные лучи. Одна из световых волн называется опорной и испускается источником, а вторая – объектной и отражается от записываемого объекта.

На фотопластинке либо другом материале, предназначенном для записи, фиксируется сочетание светлых и тёмных полос и пятен, которые отображают интерференцию электромагнитных волн в этой зоне пространства. Если на фотопластинку направляют свет с длиной волны, соответствующей характеристикам опорной волны, то происходит его преобразование в световую волну, по характеристикам близкую к объектной. Таким образом, в световом потоке получается объёмное изображение зафиксированного объекта.


Сегодня неподвижные голограммы можно записывать и воспроизводить даже в домашних условиях. Для этого нужен лазерный луч, фотопластина и каркас, который надёжно удерживает в неподвижности эти приспособления, а также объект записи. Для домашней голограммы отлично подойдёт луч лазерной указки со снятой фокусирующей линзой.

В этой статье рассматривается такое явление физики, как интерференция: что такое, когда возникает и как применяется. Также подробно рассказывается о смежном понятии волновой физики - дифракции.

Виды волн

Когда в книге или в разговоре возникает слово «волна», то, как правило, сразу представляется море: синий простор, безмерная даль, одна за другой на берег набегают соленые валы. Житель степей представит себе другой вид: безбрежный простор травы, она колышется под ласковым ветерком. Кто-то еще вспомнит волны, рассматривая складки тяжелой портьеры или трепетание флага в солнечный день. Математик подумает о синусоиде, любитель радио - об электромагнитных колебаниях. Все они имеют различную природу и относятся к разным видам. Но неоспоримо одно: волна - это состояние отклонения от равновесия, превращения какого-то «гладкого» закона в колебательный. Именно для них применимо такое явление, как интерференция. Что такое и как она возникает, рассмотрим чуть позже. Сначала разберёмся, какими бывают волны. Перечислим следующие виды:

  • механические;
  • химические;
  • электромагнитные;
  • гравитационные;
  • спиновые;
  • вероятностные.

С точки зрения физики, волны переносят энергию. Но случается, что перемещается и масса. Отвечая на вопрос о том, что такое интерференция в физике, следует отметить, что она характерна для волн абсолютно любой природы.

Признаки различия волн

Как ни странно, но единого определения волны не существует. Их виды настолько разнообразны, что только типов классификации более десятка. По каким же признакам различают волны?

  1. По способу распространения в среде (бегущие или стоячие).
  2. По характеру самой волны (колебательные и солитоны отличны именно по этому признаку).
  3. По типу распределения в среде (продольные, поперечные).
  4. По степени линейности (линейные или нелинейные).
  5. По свойствам среды, в которой они распространяются (дискретные, непрерывные).
  6. По форме (плоские, сферические, спиральные).
  7. По особенностям физической среды распространения (механические, электромагнитные, гравитационные).
  8. По направлению колебания частиц среды (волны сжатия или сдвига).
  9. По времени, которое требуется на возбуждение среды (одиночные, монохроматические, волновой пакет).

И к любому типу этих возмущений среды применима интерференция. Что такое особенное содержится в этом понятии и почему именно это явление делает наш мир таким, какой он есть, расскажем после приведения характеристик волны.

Характеристики волны

Вне зависимости от типа и вида волн, у них всех есть общие характеристики. Вот список:

  1. Гребень - это своего рода максимум. Для волн сжатия это место наибольшей плотности среды. Представляет собой наибольшее положительное отклонение колебания от состояния равновесия.
  2. Ложбина (в некоторых случаях долина) - это обратное гребню понятие. Минимум, наибольшее отрицательное отклонение от состояния равновесия.
  3. Временная периодичность, или частота - это время, за которое волна пройдет от одного максимума к другому.
  4. Пространственная периодичность, или длина волны - это расстояние между соседними пиками.
  5. Амплитуда - это высота пиков. Именно данное определение понадобится, чтобы разобраться, что такое интерференция волн.

Мы очень подробно рассмотрели волну, ее характеристики и различные классификации, ибо понятие «интерференция» невозможно объяснить без четкого понимания такого явления, как возмущение среды. Напоминаем, что интерференция имеет смысл только для волн.

Взаимодействие волн

Теперь мы вплотную подошли к понятию «интерференция»: что такое, когда возникает и как ее определить. Все перечисленные выше виды, типы и характеристики волн относились к идеальному случаю. Это были описания «сферического коня в вакууме», то есть неких теоретических конструкций, невозможных в реальном мире. Но на практике все пространство вокруг пронизано различными волнами. Свет, звук, тепло, радио, химические процессы - это среды. И все эти волны взаимодействуют. Надо отметить одну особенность: чтобы они могли повлиять друг на друга, у них должны быть схожие характеристики.

Волны звука никоим образом не смогут интерферировать со светом, а радиоволны никак не взаимодействуют с ветром. Конечно, влияние все равно есть, но оно настолько мало, что его действие просто не учитывается. Другими словами, при объяснении, что такое интерференция света, предполагается, что один фотон влияет на другой при встрече. Итак, подробнее.

Интерференция

Для многих видов волн действует принцип суперпозиции: встречаясь в одной точке пространства, они взаимодействуют. Обмен энергией отображается на изменении амплитуды. Закон взаимодействия следующий: если встречаются в одной точке два максимума, то в конечной волне интенсивность максимума увеличивается вдвое; если встречаются максимум и минимум, то итоговая амплитуда обращается в ноль. Это и есть наглядный ответ на вопрос о том, что такое интерференция света и звука. По сути, это явление наложения.

Интерференция волн с разными характеристиками

Описанное выше событие представляет встречу двух одинаковых волн в линейном пространстве. Однако две встречные волны могут иметь разные частоты, амплитуды, длины. Как представить итоговую картину в таком случае? Ответ кроется в том, что результат будет не совсем похож на волну. То есть строгий порядок чередования максимумов и минимумов будет нарушен: в какой-то момент амплитуда будет максимальной, в следующий - уже меньше, потом встретятся максимум и минимум и результат обратится в ноль. Однако, какими бы сильными ни были различия двух волн, амплитуда все равно рано или поздно повторится. В математике принято говорить о бесконечности, но в реальности силы трения и инерция могут остановить само существование результирующей волны до того, как картина пиков, долин и равнин повторится.

Интерференция волн, встречающихся под углом

Но, помимо собственных характеристик, у реальных волн может различаться положение в пространстве. Например, при рассмотрении вопроса о том, что такое интерференция звука, это необходимо учитывать. Представьте: идет мальчик и дует в свистульку. Он посылает звуковую волну впереди себя. А мимо него проезжает другой мальчик на велосипеде и звенит в звонок, чтобы пешеход посторонился. В месте встречи этих двух звуковых волн они пересекаются под некоторым углом. Как рассчитать амплитуду и форму конечного колебания воздуха, который долетит, например, до ближайшей торговки семечками бабушки Маши? Тут в силу вступает векторная составляющая звуковой волны. И складывать или вычитать в данном случае надо не только величины амплитуды, но и векторы распространения этих колебаний. Надеемся, что бабушка Маша при этом не будет сильно кричать на шумящих ребят.

Интерференция света с разной поляризацией

Бывает и так, что в одной точке встречаются фотоны разной поляризации. В этом случае тоже следует учитывать векторную составляющую электромагнитных колебаний. Если они не взаимно перпендикулярны или один из пучков света имеет круговую или эллиптическую поляризацию, то взаимодействие вполне возможно. На этом принципе строится несколько способов определения оптической чистоты кристаллов: в перпендикулярно поляризованных пучках не должно быть никакого взаимодействия. Если картина искажается, то кристалл неидеален, он изменяет поляризацию пучков, а значит, выращен неправильно.

Интерференция и дифракция

Взаимодействие двух пучков света приводит к их интерференции, в итоге наблюдатель видит ряд светлых (максимумов) и темных (минимумов) полос или колец. А вот взаимодействие света и вещества сопровождается другим явлением - дифракцией. Оно основано на том, что свет разной длины волны иначе преломляется средой. Например, если длина волны 300 нанометров, то угол отклонения составляет 10 градусов, а если 500 нанометров - уже 12. Таким образом, когда на призму из кварца падает свет от солнечного луча, красный преломляется не так, как фиолетовый (их длины волн различаются), и наблюдатель видит радугу. Это ответ на вопрос о том, что такое интерференция и дифракция света и чем они отличаются. Если направить на ту же призму монохроматическое излучение от лазера, никакой радуги не будет, так как нет фотонов различной длины волны. Просто луч отклонится от первоначального направления распространения на некоторый угол, и все.

Применение явления интерференции на практике

Возможностей получить практическую пользу из этого сугубо теоретического явления очень много. Здесь будут перечислены лишь основные из них:

  1. Исследование качества кристаллов. Чуть выше мы рассказывали об этом.
  2. Выявление погрешностей линз. Часто они должны быть отшлифованы в идеальной сферической форме. Наличие каких-либо дефектов обнаруживают именно с помощью явления интерференции.
  3. Определение толщины пленок. В некоторых видах производства очень много значит постоянная толщина пленки, например пластиковой. Определить ее качество позволяет именно явление интерференции вместе с дифракцией.
  4. Просветление оптики. Очки, линзы фотоаппаратов и микроскопов покрывают тонкой пленкой. Таким образом, электромагнитные волны определенной длины просто отражаются и накладываются сами на себя, уменьшая помехи. Чаще всего просветление делается в зеленой части оптического спектра, так как именно эту область человеческий глаз воспринимает лучше всего.
  5. Изучение космоса. Зная законы интерференции, астрономы способны разделить спектры двух близко расположенных звезд и определить их составы и расстояние до Земли.
  6. Теоретические исследования. Когда-то именно с помощью явления интерференции удалось доказать волновую природу элементарных частиц, таких как электроны и протоны. Этим была подтверждена гипотеза корпускулярно-волнового дуализма микромира и положено начало квантовой эре.

Надеемся, что с данной статьёй ваши познания о наложении когерентных (испускаемых источниками, имеющими постоянную разность фаз и одинаковую частоту) волн значительно расширились. Это явление и называется интерференцией.

Интерференция - сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление амплитуды результирующей волны. Явление характерно для волн любой природы: звуковых волн, волн на поверхности воды, электромагнитных волн и др.

Устойчивую интерференционную картину дают только когерентные волны , т.е. волны, имеющие одинаковые частоты и постоянную во времени разность фаз колебаний.

Пусть в точку А пришли две волны одинаковой частоты, прошедшие перед этим различные расстояния l 1 и l 2 от своих источников.

Амплитуда результирующего колебания зависит от величины, называемой разностью хода волн.

Если разность хода равна целому числу волн, то волны приходят в точку синфазно. Складываясь, волны усиливают друг друга и дают колебание с удвоенной амплитудой.

Если разность хода равна нечетному числу полуволн, то волны приходят в точку А в противофазе. В этом случае они гасят друг друга, амплитуда результирующего колебания равна нулю.

В других точках пространства наблюдается частичное усиление или ослабление результирующей волны.

Опыт Юнга

В 1802 г. английский ученый Томас Юнг поставил опыт, в котором наблюдал интерференцию света. Свет из узкой щели S , падал на экран с двумя близко расположенными щелями S 1 и S 2 . Проходя через каждую из щелей, световой пучок расширялся, и на белом экране световые пучки, прошедшие через щели S 1 и S 2 , перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Ход луча в мыльной пленке

На рисунке изображена в разрезе сильно увеличенная по толщине мыльная пленка. Пусть в точке А пленки попадает световая волна. Часть света отражается от этой поверхности, а часть - преломляется, проходит внутрь пленки и отражается от ее поверхности в точке В. Эти два отраженных пучка света имеют одинаковую частоту, поскольку исходят от одного источника. Складываясь, они образуют интерференционную картину.

С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен, рисунки на крыльях некоторых бабочек и жуков и др.

    Интерференция (психология) - теория, относящаяся к человеческой памяти. Интерференция появляется при обучении, когда происходит взаимодействие между новым материалом и уже имеющимися воспоминаниями, что ведёт к негативному влиянию на усвоение нового материала.

    Интерференция (Лингвистическая интерференция) (лат. interferens, от inter - между + -ferens - несущий, переносящий) - обозначает в языкознании последствие влияния одного языка на другой, т.е. применение норм одного языка в другом в письменной и/или устной речи.

    Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

    Интерфере́нция све́та - интерференция электромагнитных волн (в узком смысле - прежде всего, видимого света) - перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.

    Интерфере́нция в тóнких плёнках – явление, которое возникает в результате разделения луча света при отражении от верхней и нижней границ тонкой плёнки. В результате возникают две световые волны, которые могут интерферировать. Тонкоплёночная интерференция объясняет цветовую палитру, видимую в свете, отраженном от мыльных пузырей и масляных плёнок на воде. Это явление также является основополагающим механизмом, используемым в объективах камер, зеркалах, оптических фильтрах и антибликовых покрытиях...

    Подробнее: