Tabelul tuturor integralelor. Metode de integrare de bază

Tabel de antiderivate ("integrale"). Tabelul integralelor. Integrale nedefinite tabelare. (Cele mai simple integrale și integrale cu un parametru). Formule de integrare pe părți. formula Newton-Leibniz.

Tabel de antiderivate ("integrale"). Integrale nedefinite tabelare. (Cele mai simple integrale și integrale cu un parametru).

Integrală a unei funcții de putere.

Integrală a unei funcții de putere.

O integrală care se reduce la integrala unei funcții de putere dacă x este condus sub semnul diferențial.

Integrală a unei exponențiale, unde a este un număr constant.

Integrală a unei funcții exponențiale complexe.

Integrală a unei funcții exponențiale.

O integrală egală cu logaritmul natural.

Integrală: „Logaritm lung”.

Integrală: „Logaritm lung”.

Integrală: „Logaritm mare”.

O integrală, în care x în numărător este plasat sub semnul diferențial (constanta de sub semn poate fi fie adunată, fie scăzută), este în cele din urmă similară cu o integrală egală cu logaritmul natural.

Integrală: „Logaritm mare”.

Integrală de cosinus.

Sine integrală.

Integrală egală cu tangenta.

Integrală egală cu cotangente.

Integrală egală cu arcsinus și arccosinus

O integrală egală cu arcsinus și arccosinus.

O integrală egală atât cu arctangente cât și cu arctangente.

Integrală egală cu cosecantei.

Integrală egală cu secanta.

Integrală egală cu arcsecanta.

Integrală egală cu arccosecant.

Integrală egală cu arcsecanta.

Integrală egală cu arcsecanta.

Integrală egală cu sinusul hiperbolic.

Integrală egală cu cosinusul hiperbolic.

Integrală egală cu sinusul hiperbolic, unde sinhx este sinusul hiperbolic în versiunea engleză.

Integrală egală cu cosinusul hiperbolic, unde sinhx este sinusul hiperbolic în versiunea engleză.

Integrală egală cu tangentei hiperbolice.

Integrală egală cu cotangentei hiperbolice.

Integrală egală cu secantei hiperbolice.

Integrală egală cu cosecantei hiperbolice.

Formule de integrare pe părți. Reguli de integrare.

Formule de integrare pe părți. Formula Newton-Leibniz Reguli de integrare.

Integrarea unui produs (funcție) printr-o constantă:

Integrarea sumei funcțiilor:

integrale nedefinite:

Formula de integrare pe părți

integrale definite:

formula Newton-Leibniz

integrale definite:

Unde F(a),F(b) sunt valorile antiderivatelor la punctele b și, respectiv, a.

Tabelul derivatelor. Derivate tabulare. Derivat al produsului. Derivată a coeficientului. Derivată a unei funcții complexe.

Dacă x este o variabilă independentă, atunci:

Tabelul derivatelor. Derivate tabelare."derivat de tabel" - ​​da, din păcate, exact așa sunt căutați pe Internet

Derivată a unei funcții de putere

Derivată a exponentului

Derivată a unei funcții exponențiale complexe

Derivată a funcției exponențiale

Derivată a unei funcții logaritmice

Derivată a logaritmului natural

Derivată a logaritmului natural al unei funcții

Derivat de sinus

Derivată a cosinusului

Derivată a cosecantei

Derivatul unei secante

Derivată de arcsinus

Derivată a arccosinusului

Derivată de arcsinus

Derivată a arccosinusului

Derivată tangentă

Derivat al cotangentei

Derivată a arctangentei

Derivată a cotangentei arcului

Derivată a arctangentei

Derivată a cotangentei arcului

Derivată a arcsecantei

Derivat de arccosecant

Derivată a arcsecantei

Derivat de arccosecant

Derivată a sinusului hiperbolic

Derivatul sinusului hiperbolic în versiunea engleză

Derivatul cosinus hiperbolic

Derivatul cosinus hiperbolic în versiunea engleză

Derivată a tangentei hiperbolice

Derivat al cotangentei hiperbolice

Derivat al secantei hiperbolice

Derivată a cosecantei hiperbolice

Reguli de diferențiere. Derivat al produsului. Derivată a coeficientului. Derivată a unei funcții complexe.

Derivată a unui produs (funcție) printr-o constantă:

Derivată a sumei (funcții):

Derivat al produsului (funcții):

Derivată a coeficientului (de funcții):

Derivata unei functii complexe:

Proprietățile logaritmilor. Formule de bază pentru logaritmi. zecimală (lg) și logaritmi naturali (ln).

Identitatea logaritmică de bază

Să arătăm cum orice funcție de forma a b poate fi făcută exponențială. Deoarece o funcție de forma e x se numește exponențială, atunci

Orice funcție de forma a b poate fi reprezentată ca o putere a zece

Logaritmul natural ln (logaritmul la baza e = 2,718281828459045...) ln(e)=1; ln(1)=0

Seria Taylor. Expansiunea în serie Taylor a unei funcții.

Se pare că majoritatea practic întâlnit funcțiile matematice pot fi reprezentate cu orice precizie în vecinătatea unui anumit punct sub formă de serii de puteri care conțin puteri ale unei variabile în ordine crescătoare. De exemplu, în vecinătatea punctului x=1:

Când utilizați seria numită Rândurile lui Taylor funcțiile mixte care conțin, de exemplu, funcții algebrice, trigonometrice și exponențiale pot fi exprimate ca funcții pur algebrice. Folosind seria, de multe ori puteți efectua rapid diferențierea și integrarea.

Seria Taylor în vecinătatea punctului a are următoarele forme:

1) , unde f(x) este o funcție care are derivate de toate ordinele la x = a. R n - termenul rămas din seria Taylor este determinat de expresie

2)

Coeficientul k-al (la x k) al seriei este determinat de formula

3) Un caz special al seriei Taylor este seria Maclaurin (=McLaren). (expansiunea are loc în jurul punctului a=0)

la a=0

membrii seriei sunt determinati de formula

Condiții de utilizare a seriei Taylor.

1. Pentru ca funcția f(x) să fie extinsă într-o serie Taylor pe intervalul (-R;R), este necesar și suficient ca termenul rămas din formula Taylor (Maclaurin (=McLaren)) pentru aceasta funcția tinde spre zero ca k →∞ pe intervalul specificat (-R;R).

2. Este necesar ca derivate să existe pentru o funcție dată în punctul în vecinătatea căruia vom construi seria Taylor.

Proprietățile seriei Taylor.

    Dacă f este o funcție analitică, atunci seria sa Taylor în orice punct a din domeniul definiției lui f converge către f într-o vecinătate a lui a.

    Există funcții infinit diferențiabile a căror serie Taylor converge, dar în același timp diferă de funcția din orice vecinătate a lui a. De exemplu:

Seriile Taylor sunt folosite în aproximarea (aproximarea este o metodă științifică care constă în înlocuirea unor obiecte cu altele, într-un sens sau altul apropiate de cele originale, dar mai simple) a unei funcții prin polinoame. În special, liniarizarea ((din linearis - liniar), una dintre metodele de reprezentare aproximativă a sistemelor neliniare închise, în care studiul unui sistem neliniar este înlocuit cu analiza unui sistem liniar, într-un fel echivalent cu cel original .) Ecuațiile apar prin extinderea într-o serie Taylor și tăierea tuturor termenilor de mai sus de ordinul întâi.

Astfel, aproape orice funcție poate fi reprezentată ca un polinom cu o precizie dată.

Exemple de expansiuni comune ale funcțiilor de putere din seria Maclaurin (=McLaren, Taylor în vecinătatea punctului 0) și Taylor în vecinătatea punctului 1. Primii termeni de extindere a funcțiilor principale din seria Taylor și McLaren.

Exemple de expansiuni comune ale funcțiilor de putere din seria Maclaurin (=McLaren, Taylor în vecinătatea punctului 0)

Exemple de expansiuni comune ale seriei Taylor în vecinătatea punctului 1

Funcția antiderivată și integrală nedefinită

Faptul 1. Integrarea este acțiunea inversă a diferențierii și anume restabilirea unei funcții din derivata cunoscută a acestei funcții. Funcția astfel restabilită F(X) se numește antiderivat pentru functie f(X).

Definiție 1. Funcție F(X f(X) pe un anumit interval X, dacă pentru toate valorile X din acest interval egalitatea este valabilă F "(X)=f(X), adică această funcție f(X) este derivata funcției antiderivative F(X). .

De exemplu, funcția F(X) = păcat X este o antiderivată a funcției f(X) = cos X pe întreaga dreaptă numerică, deoarece pentru orice valoare a lui x (păcat X)" = (cos X) .

Definiție 2. Integrală nedefinită a unei funcții f(X) este mulțimea tuturor antiderivatelor sale. În acest caz, se folosește notația

f(X)dx

,

unde este semnul numit semn integral, funcția f(X) – funcția integrand și f(X)dx – expresie integrantă.

Astfel, dacă F(X) – unele antiderivate pt f(X) , Acea

f(X)dx = F(X) +C

Unde C - constantă arbitrară (constant).

Pentru a înțelege semnificația mulțimii de antiderivate ale unei funcții ca integrală nedefinită, este potrivită următoarea analogie. Să fie o uşă (uşă tradiţională din lemn). Funcția sa este de a „fi o ușă”. Din ce este făcută ușa? Facut din lemn. Aceasta înseamnă că mulțimea de antiderivate ale integrandului funcției „a fi o ușă”, adică integrala sa nedefinită, este funcția „a fi un arbore + C”, unde C este o constantă, care în acest context poate denotă, de exemplu, tipul de arbore. Așa cum o ușă este făcută din lemn folosind unele unelte, un derivat al unei funcții este „facut” dintr-o funcție antiderivată folosind formule pe care le-am învățat în timp ce studiam derivata .

Apoi tabelul cu funcțiile obiectelor comune și antiderivatele lor corespunzătoare („a fi o ușă” - „a fi un copac”, „a fi o lingură” - „a fi metal”, etc.) este similar cu tabelul de bază. integrale nedefinite, care vor fi date mai jos. Tabelul de integrale nedefinite enumeră funcțiile comune cu o indicație a antiderivatelor din care sunt „facute” aceste funcții. În parte din problemele de găsire a integralei nedefinite, sunt dați integranți care pot fi integrați direct fără prea mult efort, adică folosind tabelul integralelor nedefinite. În problemele mai complexe, integrandul trebuie mai întâi transformat, astfel încât integralele de tabel să poată fi utilizate.

Faptul 2. Când restabilim o funcție ca antiderivată, trebuie să luăm în considerare o constantă (constant) arbitrară C, iar pentru a nu scrie o listă de antiderivate cu diverse constante de la 1 la infinit, trebuie să scrieți un set de antiderivate cu o constantă arbitrară C, de exemplu, astfel: 5 X³+C. Deci, o constantă arbitrară (constant) este inclusă în expresia antiderivatei, deoarece antiderivatul poate fi o funcție, de exemplu, 5 X³+4 sau 5 X³+3 și când este diferențiat, 4 sau 3 sau orice altă constantă ajunge la zero.

Să punem problema integrării: pentru această funcție f(X) găsiți o astfel de funcție F(X), al cărui derivat egal cu f(X).

Exemplul 1. Aflați mulțimea de antiderivate ale unei funcții

Soluţie. Pentru această funcție, antiderivată este funcția

Funcţie F(X) se numește antiderivată pentru funcție f(X), dacă derivata F(X) este egal cu f(X), sau, ceea ce este același lucru, diferențială F(X) este egal f(X) dx, adică

(2)

Prin urmare, funcția este o antiderivată a funcției. Cu toate acestea, nu este singurul antiderivat pentru . Ele servesc și ca funcții

Unde CU– constantă arbitrară. Acest lucru poate fi verificat prin diferențiere.

Astfel, dacă există o singură antiderivată pentru o funcție, atunci pentru aceasta există un număr infinit de antiderivate care diferă printr-un termen constant. Toate antiderivatele pentru o funcție sunt scrise în forma de mai sus. Aceasta rezultă din următoarea teoremă.

Teoremă (enunțul formal al faptului 2). Dacă F(X) – antiderivată pentru funcție f(X) pe un anumit interval X, apoi orice alt antiderivat pentru f(X) pe același interval poate fi reprezentat sub formă F(X) + C, Unde CU– constantă arbitrară.

În exemplul următor, ne întoarcem la tabelul integralelor, care va fi dat în paragraful 3, după proprietățile integralei nedefinite. Facem acest lucru înainte de a citi întregul tabel, astfel încât esența celor de mai sus să fie clară. Și după tabel și proprietăți, le vom folosi în întregime în timpul integrării.

Exemplul 2. Găsiți seturi de funcții antiderivate:

Soluţie. Găsim seturi de funcții antiderivate din care aceste funcții sunt „facute”. Când menționăm formule din tabelul integralelor, deocamdată acceptați doar că există astfel de formule acolo și vom studia tabelul integralelor nedefinite în sine puțin mai departe.

1) Aplicând formula (7) din tabelul de integrale pentru n= 3, obținem

2) Folosind formula (10) din tabelul de integrale pentru n= 1/3, avem

3) Din moment ce

apoi conform formulei (7) cu n= -1/4 găsim

Nu funcția în sine este scrisă sub semnul integral f, și produsul său prin diferenţial dx. Acest lucru se face în primul rând pentru a indica prin ce variabilă este căutat antiderivatul. De exemplu,

, ;

aici în ambele cazuri integrandul este egal cu , dar integralele sale nedefinite în cazurile considerate se dovedesc a fi diferite. În primul caz, această funcție este considerată ca o funcție a variabilei X, iar în al doilea - în funcție de z .

Procesul de găsire a integralei nedefinite a unei funcții se numește integrarea acelei funcții.

Sensul geometric al integralei nedefinite

Să presupunem că trebuie să găsim o curbă y=F(x)și știm deja că tangenta unghiului tangentei în fiecare dintre punctele sale este o funcție dată f(x) abscisa acestui punct.

După semnificația geometrică a derivatei, tangenta unghiului de înclinare a tangentei într-un punct dat al curbei y=F(x) egal cu valoarea derivatei F"(x). Deci trebuie să găsim o astfel de funcție F(x), pentru care F"(x)=f(x). Funcția necesară în sarcină F(x) este un antiderivat al f(x). Condițiile problemei sunt îndeplinite nu de o curbă, ci de o familie de curbe. y=F(x)- una dintre aceste curbe și orice altă curbă pot fi obținute din aceasta prin translație paralelă de-a lungul axei Oi.

Să numim graficul funcției antiderivative de f(x) curba integrala. Dacă F"(x)=f(x), apoi graficul funcției y=F(x) există o curbă integrală.

Faptul 3. Integrala nedefinită este reprezentată geometric prin familia tuturor curbelor integrale , ca in poza de mai jos. Distanța fiecărei curbe de la originea coordonatelor este determinată de o constantă de integrare arbitrară C.

Proprietățile integralei nedefinite

Faptul 4. Teorema 1. Derivata unei integrale nedefinite este egala cu integrandul, iar diferenta sa este egala cu integrandul.

Faptul 5. Teorema 2. Integrală nedefinită a diferenţialului unei funcţii f(X) este egală cu funcția f(X) până la un termen constant , adică

(3)

Teoremele 1 și 2 arată că diferențierea și integrarea sunt operații reciproc inverse.

Faptul 6. Teorema 3. Factorul constant din integrand poate fi scos din semnul integralei nedefinite , adică

Integrarea este una dintre operațiile principale în analiza matematică. Tabelele cu antiderivate cunoscute pot fi utile, dar acum, după apariția sistemelor de algebră computerizată, își pierd semnificația. Mai jos este o listă cu cele mai comune primitive.

Tabelul integralelor de bază

O altă opțiune, compactă

Tabelul integralelor funcțiilor trigonometrice

Din funcţii raţionale

Din funcții iraționale

Integrale ale funcțiilor transcendentale

„C” este o constantă de integrare arbitrară, care este determinată dacă valoarea integralei în orice punct este cunoscută. Fiecare funcție are un număr infinit de antiderivate.

Majoritatea elevilor și elevilor au probleme în calcularea integralelor. Aceasta pagina contine tabele integrale din funcții trigonometrice, raționale, iraționale și transcendentale care vor ajuta la rezolvare. Un tabel cu derivate vă va ajuta, de asemenea.

Video - cum să găsiți integralele

Dacă nu înțelegi prea bine acest subiect, urmărește videoclipul, care explică totul în detaliu.

>> Metode de integrare

Metode de integrare de bază

Definiția integrală, integrală definită și nedefinită, tabel de integrale, formula Newton-Leibniz, integrare pe părți, exemple de calcul a integralelor.

Integrală nedefinită

Se numește o funcție F(x) diferențiabilă într-un interval dat X antiderivată a funcției f(x), sau integrala lui f(x), dacă pentru fiecare x ∈X este valabilă următoarea egalitate:

F " (x) = f(x). (8.1)

Găsirea tuturor antiderivatelor pentru o funcție dată se numește ea integrare. Funcție integrală nedefinită f(x) pe un interval dat X este mulțimea tuturor funcțiilor antiderivate pentru funcția f(x); denumire -

Dacă F(x) este o antiderivată pentru funcția f(x), atunci ∫ f(x)dx = F(x) + C, (8.2)

unde C este o constantă arbitrară.

Tabelul integralelor

Direct din definiție obținem principalele proprietăți ale integralei nedefinite și o listă de integrale tabulare:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Lista integralelor tabelare

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctan x + C

8. = arcsin x + C

10. = - ctg x + C

Înlocuire variabilă

Pentru a integra multe funcții, utilizați metoda de înlocuire a variabilei sau substituții, permițându-vă să reduceți integralele la formă tabelară.

Dacă funcția f(z) este continuă pe [α,β], funcția z =g(x) are o derivată continuă și α ≤ g(x) ≤ β, atunci

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

Mai mult, după integrarea din partea dreaptă, trebuie făcută înlocuirea z=g(x).

Pentru a dovedi, este suficient să scrieți integrala originală sub forma:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

De exemplu:

1)

2) .

Metoda de integrare pe părți

Fie u = f(x) și v = g(x) funcții care au continuu . Apoi, conform lucrării,

d(uv))= udv + vdu sau udv = d(uv) - vdu.

Pentru expresia d(uv), antiderivatul va fi evident uv, deci formula este valabilă:

∫ udv = uv - ∫ vdu (8.4.)

Această formulă exprimă regula integrare pe părți. Conduce integrarea expresiei udv=uv"dx la integrarea expresiei vdu=vu"dx.

De exemplu, doriți să găsiți ∫xcosx dx. Să punem u = x, dv = cosxdx, deci du=dx, v=sinx. Apoi

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Regula integrării pe părți are un domeniu de aplicare mai limitat decât înlocuirea variabilelor. Dar există clase întregi de integrale, de exemplu,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax și altele, care sunt calculate precis folosind integrarea pe părți.

Integrala definita

Conceptul de integrală definită este introdus după cum urmează. Fie definită o funcție f(x) pe un interval. Să împărțim segmentul [a,b] în n părți prin puncte a= x 0< x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1. Se numește o sumă de forma f(ξ i)Δ x i suma integrală, iar limita sa la λ = maxΔx i → 0, dacă există și este finită, se numește integrala definita funcţiile f(x) ale A inainte de b si este desemnata:

F(ξ i)Δx i (8.5).

Funcția f(x) în acest caz este numită integrabil pe interval, se numesc numerele a și b limitele inferioare și superioare ale integralei.

Următoarele proprietăți sunt adevărate pentru o integrală definită:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Ultima proprietate este numită teorema valorii medii.

Fie f(x) continuă pe . Apoi pe acest segment există o integrală nedefinită

∫f(x)dx = F(x) + C

si are loc formula Newton-Leibniz, legând integrala definită cu integrala nedefinită:

F(b) - F(a). (8,6)

Interpretare geometrică: integrala definită este aria unui trapez curbiliniu delimitată de sus de curba y=f(x), drepte x = a și x = b și un segment al axei Bou.

Integrale improprii

Se numesc integralele cu limite infinite și integralele funcțiilor discontinue (nemărginite). nu a ta. Integrale improprii de primul fel - Acestea sunt integrale pe un interval infinit, definite după cum urmează:

(8.7)

Dacă această limită există și este finită, atunci se numește integrala improprie convergentă a lui f(x) pe intervalul [a,+ ∞), și se numește funcția f(x). integrabil pe un interval infinit[a,+ ∞). În caz contrar, se spune că integrala este nu există sau diverge.

Integrale improprii pe intervalele (-∞,b] și (-∞, + ∞) sunt definite în mod similar:

Să definim conceptul de integrală a unei funcții nemărginite. Dacă f(x) este continuă pentru toate valorile X segmentul , cu excepția punctului c, la care f(x) are o discontinuitate infinită, atunci integrala improprie a celui de-al doilea fel de f(x) variind de la a la b suma se numeste:

dacă aceste limite există și sunt finite. Desemnare:

Exemple de calcule integrale

Exemplul 3.30. Calculați ∫dx/(x+2).

Soluţie. Să notăm t = x+2, atunci dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| +C.

Exemplul 3.31. Găsiți ∫ tgxdx.

Soluţie.∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Fie t=cosx, atunci ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Exemplu3.32 . Găsiți ∫dx/sinx

Soluţie.

Exemplu3.33. Găsi .

Soluţie. =

.

Exemplu3.34 . Găsiți ∫arctgxdx.

Soluţie. Să integrăm pe părți. Să notăm u=arctgx, dv=dx. Atunci du = dx/(x 2 +1), v=x, de unde ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; deoarece
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Exemplu3.35 . Calculați ∫lnxdx.

Soluţie. Aplicând formula de integrare prin părți, obținem:
u=lnx, dv=dx, du=1/x dx, v=x. Atunci ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Exemplu3.36 . Calculați ∫e x sinxdx.

Soluţie. Să notăm u = e x, dv = sinxdx, apoi du = e x dx, v =∫ sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. De asemenea, integrăm integrala ∫e x cosxdx prin părți: u = e x , dv = cosxdx, du=e x dx, v=sinx. Avem:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Am obținut relația ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, din care 2∫e x sinx dx = - e x cosx + e x sinx + C.

Exemplu 3.37. Calculați J = ∫cos(lnx)dx/x.

Soluţie. Deoarece dx/x = dlnx, atunci J= ∫cos(lnx)d(lnx). Înlocuind lnx prin t, ajungem la integrala tabelului J = ∫ costdt = sint + C = sin(lnx) + C.

Exemplu 3.38 . Calculați J = .

Soluţie. Considerând că = d(lnx), înlocuim lnx = t. Atunci J = .