Таблиця всіх інтегралів. Основні методи інтегрування

Таблиця первісних (інтегралів). Таблиця інтегралів. Табличні невизначені інтеграли. (Найпростіші інтеграли та інтеграли з параметром). Формули інтегрування частинами. Формула Ньютона-Лейбніца.

Таблиця первісних (інтегралів). Табличні невизначені інтеграли. (Найпростіші інтеграли та інтеграли з параметром).

Інтеграл статечної функції.

Інтеграл статечної функції.

Інтеграл, що зводиться до інтегралу статечної функції, якщо загнати їх під знак диференціала.

Інтеграли експоненти, де a-постійне число.

Інтеграл складної експонентної функції.

Інтеграл експонентної функції.

Інтеграл, що дорівнює натуральному логорифму.

Інтеграл: "Довгий логарифм".

Інтеграл: "Довгий логарифм".

Інтеграл: "Високий логарифм".

Інтеграл, де х в чисельнику заводиться під символ диференціала (константу під знаком можна як додавати, так і віднімати), в результаті схожий з інтегралом, що дорівнює натуральному логорифму.

Інтеграл: "Високий логарифм".

Інтеграл косинуса.

Інтеграл синусу.

Інтеграл, що дорівнює тангенсу.

Інтеграл, що дорівнює котангенсу.

Інтеграл, рівний як арксинусу, так і арккосинусу

Інтеграл, рівний як арксинусу, і арккосинусу.

Інтеграл, що дорівнює як арктангенсу, так і арккотангенсу.

Інтеграл дорівнює косекансу.

Інтеграл, що дорівнює секансу.

Інтеграл, що дорівнює арксекансу.

Інтеграл, рівний арккосекансу.

Інтеграл, що дорівнює арксекансу.

Інтеграл, що дорівнює арксекансу.

Інтеграл, що дорівнює гіперболічному синусу.

Інтеграл, що дорівнює гіперболічному косинусу.

Інтеграл, що дорівнює гіперболічному синусу, де sinhx - гіперболічний синус в ангійській версії.

Інтеграл, що дорівнює гіперболічному косинусу, де sinhx - гіперболічний синус в англійській версії.

Інтеграл, що дорівнює гіперболічному тангенсу.

Інтеграл, що дорівнює гіперболічному котангенсу.

Інтеграл, що дорівнює гіперболічному секансу.

Інтеграл, що дорівнює гіперболічному косекансу.

Формули інтегрування частинами. Правила інтегрування.

Формули інтегрування частинами. Формула Ньютона-Лейбніца. Правила інтегрування.

Інтегрування твору (функції) на постійну:

Інтегрування суми функцій:

невизначені інтеграли:

Формула інтегрування частинами

певні інтеграли:

Формула Ньютона-Лейбніца

певні інтеграли:

Де F(a),F(b)-значення первісних у точках b та a відповідно.

Таблиця похідних. Табличні похідні. Похідні твори. Похідна приватна. Похідна складна функція.

Якщо x - незалежна змінна, то:

Таблиця похідних. Табличні похідні. "Таблиця похідний" - так, на жаль, саме так їх і шукають в інтернеті

Похідна статечної функції

Похідна експоненти

Похідна складної експоненційної функції

Похідна експоненційної функції

Похідна логарифмічна функція

Похідна натурального логарифму

Похідна натурального логарифму функції

Похідна синуса

Похідна косинуса

Похідна косекансу

Похідна секанса

Похідна арксинуса

Похідна арккосинусу

Похідна арксинуса

Похідна арккосинусу

Похідна тангенса

Похідна котангенсу

Похідна арктангенса

Похідна арккотангенса

Похідна арктангенса

Похідна арккотангенса

Похідна арксекансу

Похідна арксекансу

Похідна арксекансу

Похідна арксекансу

Похідна гіперболічного синуса

Похідна гіперболічного синуса в англійській версії

Похідна гіперболічного косинуса

Похідна гіперболічного косинуса в англійській версії

Похідна гіперболічного тангенсу

Похідна гіперболічного котангенсу

Похідна гіперболічного секансу

Похідна гіперболічного косекансу

Правила диференціювання. Похідні твори. Похідна приватна. Похідна складна функція.

Похідна твори (функції) на постійну:

Похідна суми (функцій):

Похідна робота (функцій):

Похідна приватного (функцій):

Похідна складної функції:

Властивості логарифмів. Основні формули логарифмів. Десяткові (lg) та натуральні логарифми (ln).

Основне логарифмічне тотожність

Покажемо якомога будь-яку функцію виду a b зробити експоненційною. Оскільки функція виду їх називається експоненційною, то

Будь-яка функція виду a b може бути представлена ​​у вигляді ступеня десяти

Натуральний логарифм ln (логарифм на основі е = 2,718281828459045…) ln(e)=1; ln(1)=0

Ряд Тейлора. Розкладання функції до ряду Тейлора.

Виявляється, більшість практично зустрічаютьсяматематичних функцій можуть бути з будь-якою точністю представлені на околицях деякої точки у вигляді статечних рядів, що містять ступеня змінної в порядку зростання. Наприклад, на околиці точки х=1:

При використанні рядів, які називаються рядами Тейлора,змішані функції, що містять, скажімо, алгебраїчні, тригонометричні та експоненційні функції, можуть бути виражені у вигляді суто алгебраїчних функцій. За допомогою рядів часто можна швидко здійснити диференціювання та інтегрування.

Ряд Тейлора на околиці точки a має види:

1) , Де f (x) - функція, що має при х = а похідні всіх порядків. R n - залишковий член у ряді Тейлора визначається виразом

2)

k-тий коефіцієнт (при х k) ряду визначається формулою

3) Окремим випадком ряду Тейлора є ряд Маклорена (=Макларена) (Розкладання відбувається навколо точки а = 0)

при a=0

члени ряду визначаються за формулою

Умови застосування рядів Тейлора.

1. Для того, щоб функція f(x) могла бути розкладена в ряд Тейлора на інтервалі (-R;R) необхідно і достатньо, щоб залишковий член у формулі Тейлора (Маклорена (=Макларена)) для даної функції прагнув нуля при k →∞ на вказаному інтервалі (-R;R).

2. Необхідно, щоб існували похідні для цієї функції в точці, в околиці якої ми збираємося будувати ряд Тейлора.

Властивості рядів Тейлора.

    Якщо f є аналітична функція, то її ряд Тейлора в будь-якій точці області визначення f сходить до f в деякій околиці а.

    Існують нескінченно диференційовані функції, ряд Тейлора яких сходиться, але при цьому відрізняється від функції у будь-якій околиці а. Наприклад:

Ряди Тейлора застосовуються при апроксимації (наближення - науковий метод, що полягає у заміні одних об'єктів іншими, у тому чи іншому сенсі близькими до вихідних, але більш простими) функції багаточленів. Зокрема, лінеаризація ((від linearis - лінійний), один із методів наближеного уявлення замкнутих нелінійних систем, при якому дослідження нелінійної системи замінюється аналізом лінійної системи, в деякому сенсі еквівалентної вихідної.) рівнянь відбувається шляхом розкладання до ряду Тейлора та відсікання всіх членів першого порядку.

Таким чином, практично будь-яку функцію можна подати у вигляді полінома із заданою точністю.

Приклади деяких поширених розкладів статечних функцій у ряди Маклорена (=Макларена, Тейлора на околицях точки 0) і Тейлора на околицях точки 1. Перші члени розкладів основних функцій до рядів Тейлора і Макларена.

Приклади деяких поширених розкладів статечних функцій у ряди Маклорена(=Макларена, Тейлора на околицях точки 0)

Приклади деяких поширених розкладів у ряди Тейлора на околицях точки 1

Первісна функція та невизначений інтеграл

Факт 1. Інтегрування - дія, зворотне диференціювання, а саме, відновлення функції за відомою похідною цієї функції. Відновлена ​​таким чином функція F(x) називається первісноїдля функції f(x).

Визначення 1. Функція F(x f(x) на деякому проміжку Xякщо для всіх значень xз цього проміжку виконується рівність F "(x)=f(x), тобто дана функція f(x) є похідною від первісної функції F(x). .

Наприклад, функція F(x) = sin x є первісною для функції f(x) = cos x на всій числовій прямій, тому що при будь-якому значенні ікса (sin x)" = (cos x) .

Визначення 2. Невизначеним інтегралом функції f(x) називається сукупність всіх її первісних. При цьому використовується запис

f(x)dx

,

де знак називається знаком інтеграла, функція f(x) – підінтегральною функцією, а f(x)dx - Підінтегральний вираз.

Таким чином, якщо F(x) – якась первісна для f(x) , то

f(x)dx = F(x) +C

де C - Довільна постійна (константа).

Для розуміння сенсу безлічі первісних функцій як невизначеного інтеграла доречна наступна аналогія. Нехай є двері (традиційні дерев'яні двері). Її функція – "бути дверима". А з чого зроблено двері? Із дерева. Значить, безліччю первісних підінтегральних функцій "бути дверима", тобто її невизначеним інтегралом, є функція "бути деревом + С", де С - константа, яка в даному контексті може позначати, наприклад, породу дерева. Подібно до того, як двері зроблені з дерева за допомогою деяких інструментів, похідна функції "зроблена" з первісної функції за допомогою формули, яку ми дізналися, вивчаючи похідну .

Тоді таблиця функцій поширених предметів та відповідних їм первісних ("бути дверима" - "бути деревом", "бути ложкою" - "бути металом" та ін.) аналогічна до таблиці основних невизначених інтегралів, яка буде наведена трохи нижче. У таблиці невизначених інтегралів перераховуються поширені функції із зазначенням первісних, у тому числі " зроблені " ці функції. У частині завдань перебування невизначеного інтеграла дані такі подинтегральные функції, які без особливих умов може бути проінтегровані безпосередньо, тобто за таблицею невизначених інтегралів. У завданнях складніше підінтегральну функцію потрібно попередньо перетворити те щоб можна було використовувати табличні інтеграли.

Факт 2. Відновлюючи функцію як первісну, ми маємо враховувати довільну постійну (константу) C, а щоб не писати список первісної з різними константами від 1 до нескінченності, потрібно записувати безліч первісних з довільною константою Cнаприклад, так: 5 x³+С . Отже, довільна стала (константа) входить у вираз первісної, оскільки первісна може бути функцією, наприклад, 5 x³+4 або 5 x³+3 і при диференціюванні 4 або 3, або будь-яка інша константа перетворюються на нуль.

Поставимо завдання інтегрування: для цієї функції f(x) знайти таку функцію F(x), похідна якоїдорівнює f(x).

приклад 1.Знайти безліч первісних функцій

Рішення. Для цієї функції першорядною є функція

Функція F(x) називається первісною для функції f(x), якщо похідна F(x) дорівнює f(x), або, що те саме, диференціал F(x) дорівнює f(x) dx, тобто.

(2)

Отже, функція - первісна для функції . Однак вона не є єдиною первісною для . Ними служать також функції

де З- Довільна постійна. У цьому вся можна переконатися диференціюванням.

Таким чином, якщо для функції існує одна первісна, то для неї існує безліч первісних, що відрізняються на постійне доданок. Усі первісні функції записуються в наведеному вище вигляді. Це випливає із наступної теореми.

Теорема (формальний виклад факту 2).Якщо F(x) – первісна для функції f(x) на деякому проміжку Х, то будь-яка інша первісна для f(x) на тому ж проміжку може бути представлена ​​у вигляді F(x) + C, де З- Довільна постійна.

У наступному прикладі вже звертаємося до таблиці інтегралів, яка буде дана в параграфі 3, після властивостей невизначеного інтегралу. Робимо це до ознайомлення з усією таблицею, щоб було зрозуміло суть вищевикладеного. А після таблиці та властивостей будемо користуватися ними при інтегруванні у всій повноті.

приклад 2.Знайти безліч первісних функцій:

Рішення. Знаходимо безліч первісних функцій, у тому числі " зроблені " дані функції. При згадці формул з таблиці інтегралів поки що просто прийміть, що є такі формули, а повністю саму таблицю невизначених інтегралів ми вивчимо трохи далі.

1) Застосовуючи формулу (7) з таблиці інтегралів при n= 3, отримаємо

2) Використовуючи формулу (10) з таблиці інтегралів при n= 1/3, маємо

3) Оскільки

то за формулою (7) при n= -1/4 знайдемо

Під знаком інтеграла пишуть не саму функцію f, а її твір на диференціал dx. Це робиться насамперед для того, щоб вказати, за якою змінною шукається первісна. Наприклад,

, ;

тут обох випадках подинтегральная функція дорівнює , та її невизначені інтеграли у розглянутих випадках виявляються різними. У першому випадку ця функція сприймається як функція від змінної x, а у другому - як функція від z .

Процес знаходження невизначеного інтеграла функції називається інтегрування цієї функції.

Геометричний зміст невизначеного інтегралу

Нехай потрібно знайти криву y=F(x)і ми вже знаємо, що тангенс кута нахилу дотичної в кожній точці є задана функція f(x)абсциси цієї точки.

Відповідно до геометричного змісту похідної, тангенс кута нахилу дотичної в даній точці кривої y=F(x)дорівнює значенню похідної F"(x). Отже, потрібно знайти таку функцію F(x), для котрої F"(x)=f(x). Необхідна в завданні функція F(x)є первісною від f(x). Умову задачі задовольняє не одна крива, а сімейство кривих. y=F(x)- одна з таких кривих, а будь-яка інша крива може бути отримана з неї паралельним перенесенням вздовж осі Ой.

Назвемо графік первісної функції від f(x)інтегральної кривої. Якщо F"(x)=f(x), то графік функції y=F(x)є інтегральна крива.

Факт 3. Невизначений інтеграл геометрично представлений насінням усіх інтегральних кривих як на малюнку нижче. Відстань кожної кривої від початку координат визначається довільною постійною (константою) інтегрування C.

Властивості невизначеного інтегралу

Факт 4. Теорема 1. Похідна невизначеного інтеграла дорівнює підінтегральної функції, яке диференціал – підинтегральному вираженню.

Факт 5. Теорема 2. Невизначений інтеграл від диференціалу функції f(x) дорівнює функції f(x) з точністю до постійного доданку , тобто.

(3)

Теореми 1 і 2 показують, що диференціювання та інтегрування є взаємно-зворотними операціями.

Факт 6. Теорема 3. Постійний множник у підінтегральному вираженні можна виносити за знак невизначеного інтегралу , тобто.

Інтегрування – це одна з основних операцій у матаналізі. Таблиці відомих первісних можуть бути корисні, але зараз вони після появи систем комп'ютерної алгебри втрачають свою значущість. Нижче знаходиться список найбільш первісних, що зустрічаються.

Таблиця основних інтегралів

Інший, компактний варіант

Таблиця інтегралів від тригонометричних функцій

Від раціональних функцій

Від ірраціональних функцій

Інтеграли від трансцендентних функцій

"C" – довільна константа інтегрування, яка визначається, якщо відоме значення інтеграла в будь-якій точці. Кожна функція має безліч первісних.

Більшість школярів і студентів мають проблеми з обчисленням інтегралів. На цій сторінці зібрані таблиці інтеграліввід тригонометричних, раціональних, ірраціональних та трансцендентних функцій, які допоможуть у вирішенні. Ще вам допоможе таблиця похідних.

Відео - як знаходити інтеграли

Якщо вам не зовсім зрозуміла дана тема, перегляньте відео, в якому все докладно пояснюється.

>> Методи інтегрування

Основні методи інтегрування

Визначення інтеграла, певний і невизначений інтеграл, таблиця інтегралів, формула Ньютона-Лейбніца, інтегрування частинами, приклади обчислення інтегралів.

Невизначений інтеграл

Функція F(x), що диференціюється в даному проміжку X, називається первісної функції f(x), або інтегралом від f(x), якщо для кожного x ∈X справедлива рівність:

F "(x) = f(x). (8.1)

Знаходження всіх первісних для цієї функції називається її інтегрування. Невизначеним інтегралом функції f(x) на даному проміжку Х називається безліч всіх первісних функцій для функції f(x); позначення -

Якщо F(x) - якась первоподібна для функції f(x), то ∫ f(x)dx = F(x) + C, (8.2)

де С-довільна постійна.

Таблиця інтегралів

Безпосередньо з визначення отримуємо основні властивості невизначеного інтегралу та список табличних інтегралів:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличних інтегралів

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Заміна змінної

Для інтегрування багатьох функцій застосовують метод заміни змінної або підстановки,що дозволяє приводити інтеграли до табличної форми.

Якщо функція f(z) неперервна на [α,β], функція z =g(x) має безперервну похідну і α ≤ g(x) ≤ β, то

∫ f(g(x)) g "(x) dx = ∫f(z)dz, (8.3)

причому після інтегрування у правій частині слід зробити підстановку z = g (x).

Для доказу достатньо записати вихідний інтеграл у вигляді:

∫ f(g(x)) g "(x) dx = ∫ f(g(x)) dg(x).

Наприклад:

1)

2) .

Метод інтегрування частинами

Нехай u = f(x) та v = g(x) - функції, що мають безперервні . Тоді, за творами,

d(uv))= udv + vdu або udv = d(uv) - vdu.

Для вираження d(uv) первісної, очевидно, буде uv, тому має місце формула:

∫ udv = uv - ∫ vdu (8.4.)

Ця формула виражає правило інтегрування частинами. Воно наводить інтегрування виразу udv=uv"dx до інтегрування виразу vdu=vu"dx.

Нехай, наприклад, потрібно знайти ∫xcosx dx. Покладемо u = x, dv = cosxdx, отже du=dx, v=sinx. Тоді

∫xcosxdx = ∫x d(sin x) = x sin x - ∫ sin x dx = x sin x + cosx + C.

Правило інтегрування частинами має більш обмежену сферу застосування, ніж заміна змінної. Але є цілі класи інтегралів, наприклад,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax та інші, які обчислюються саме за допомогою інтегрування частинами.

Визначений інтеграл

Поняття певного інтеграла вводиться в такий спосіб. Нехай на відрізку визначено функцію f(x). Розіб'ємо відрізок [a, b] на nчастин точками a = x 0< x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i = x i - x i-1. Сума виду f(ξ i)Δ x i називається інтегральною сумою, а її межа при λ = maxΔx i → 0, якщо вона існує і кінцева, називається певним інтеграломфункції f(x) від aдо bі позначається:

F(ξ i)Δx i (8.5).

Функція f(x) у разі називається інтегрованої на відрізку, числа a та b носять назву нижньої та верхньої межі інтегралу.

Для певного інтеграла справедливі такі характеристики:

4), (k = const, k R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Остання властивість називається теорема про середнє значення.

Нехай f(x) безперервна на . Тоді на цьому відрізку існує невизначений інтеграл

∫f(x)dx = F(x) + C

і має місце формула Ньютона-Лейбніца, що пов'язує певний інтеграл з невизначеним:

F(b) - F(a). (8.6)

Геометрична інтерпретація: певний інтеграл є площею криволінійної трапеції, обмеженою зверху кривою y=f(x), прямими x = a і x = b і відрізком осі Ox.

Невласні інтеграли

Інтеграли з нескінченними межами та інтеграли від розривних (необмежених) функцій називаються невласними. Невласні інтеграли I роду -це інтеграли на нескінченному проміжку, що визначаються таким чином:

(8.7)

Якщо ця межа існує і кінцева, то називається схожим невласним інтегралом від f(x)на інтервалі [а,+ ∞), а функцію f(x) називають інтегрованої на нескінченному проміжку[а + ∞). Інакше про інтеграл кажуть, що він не існує або розходиться.

Аналогічно визначаються невласні інтеграли на інтервалах (-∞,b] та (-∞, + ∞):

Визначимо поняття інтеграла від необмеженої функції. Якщо f(x) безперервна для всіх значень xвідрізка , крім точки з, в якій f(x) має нескінченний розрив, то невласним інтегралом II роду від f(x) в межах від a до bназивається сума:

якщо ці межі є і кінцеві. Позначення:

Приклади обчислення інтегралів

Приклад 3.30.Обчислити ∫dx/(x+2).

Рішення.Позначимо t = x+2, тоді dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln | x +2 | + C.

Приклад 3.31. Знайти ∫ tgxdx.

Рішення.∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Нехай t = cosx, тоді tgxdx = - dt / t = - ln | t | + C = -ln|cosx|+C.

приклад3.32 . Знайти ∫dx/sinx

Рішення.

приклад3.33. Знайти.

Рішення. =

.

приклад3.34 . Знайти ∫arctgxdx.

Рішення. Інтегруємо частинами. Позначимо u=arctgx, dv=dx. Тоді du = dx/(x 2 +1), v=x, звідки ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так як
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

приклад3.35 . Обчислити ∫lnxdx.

Рішення.Застосовуючи формулу інтегрування частинами, отримаємо:
u=lnx, dv=dx, du=1/x dx, v=x. Тоді ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C = xlnx - x + C.

приклад3.36 . Обчислити ∫e x sinxdx.

Рішення.Позначимо u = e x , dv = sinxdx, тоді du = e x dx, v = sinxdx = - cosx → e x sinxdx = - e cosx + ∫ e x cosxdx. Інтеграл ∫e x cosxdx також інтегруємо вроздріб: u = e x , dv = cosxdx, du = e x dx, v = sinx. Маємо:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Отримали співвідношення ∫e x sinxdx = – e x cosx + e x sinx – ∫ e x sinxdx, звідки 2∫e x sinx dx = – e x cosx + e x sinx + С.

приклад 3.37. Обчислити J = ∫cos(lnx)dx/x.

Рішення.Оскільки dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Замінюючи lnx через t, приходимо до табличного інтеграла J = ∫ costdt = sint + C = sin (lnx) + C.

приклад 3.38 . Обчислити J =.

Рішення.Враховуючи, що = d(lnx), робимо підстановку lnx = t. Тоді J = .