Асимптота определение. Асимптоты графика функции

Если расстояние d от точки кривой у = f (х), имеющей бесконечную ветвь, до некоторой определенной прямой по мере удаления точки по этой кривой в бесконечность стре­мится к нулю, то прямая называется асимптотой кривой.

Различают асимптоты: 1) горизонтальные, 2) вертикальные и 3) наклонные.

1. Кривая у = f (х) имеет горизонтальную асимптоту у =b только в том случае, когда существует конечный предел функции f (х) при , и этот предел равен b , т. е. если

2. Кривая у = f (х) имеет вертикальную асимптоту х = а, если при . Для опре­деления вертикальных асимптот надо отыскать те значения аргу­мента, вблизи которых f (х) неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются а1, а2, …, то уравнения вертикальных асимптот будут

х = а1, х =а2…

3. Для определения наклонной асимптоты у = kx + b кривой у = f (х) надо найти числа k и b из формул

(следует отдельно рассматривать случаи ). Наклонные асимптоты у кривой у = f (х) существуют в том и только в том случае, когда эти пределы имеют ко­нечное значение. При определении этих пределов удобно пользоваться правилом Лопиталя.

Пример. Найти асимптоты кривой

Решение. Горизонтальных асимптот нет. Вертикальную асимптоту находим из условия

2х + 3 = 0 => х = - 3/2, при этом у
, когда
, у
, когда
. Определим наклонные асимптоты, уравнение которых имеет вид: у = kx + b

Так как k и b имеют конечные значения и равны между собой при х
и при х
, то имеется единственная наклонная асимптота, уравнение которой

Общее исследование функции

Под полным исследованием функции обычно понимается решение таких вопросов:

    Определение области существования функции.

    Выявление вопроса о четности и нечетности функции.

    Определение точек разрыва функции.

    Определение асимптот графика функции.

    Определение интервалов возрастания и убывания функции.

    Определение экстремума функции.

    Определение интервалов выпуклости и вогнутости графика функции.

    Определение точек перегиба.

    Нахождение пересечения с осями координат.

    Построение графика функции.

Пример. Исследуем функцию

D (y) = (
). Функция непрерывна на всей области определения. Точек разрыва нет.

Функция не является ни четной, ни нечетной, ни периодической.

Точек разрыва нет.

Вертикальных асимптот нет;
, наклонных асимптот нет.

5, 6.
. Критические точки х = -2, х = 0.

(
)

(
)

Знак

= 0

Поведение функции

Возрастает

3

Возрастает

7, 8.
,
при х = 1,
не существует при х = 0.

(
)

(
)

Знак

=

= 0

Поведение функции

Выпукла верх

Не является точкой перегиба

Выпукла верх

Точка перегиба

Выпукла вниз

9.
х =0 и х = -5.

Задание 1

    Вычислить определитель матрицы А второго порядка

    Вычислить определитель матрицы В третьего порядка

    Вычислить определитель матрицы В, разложив его по какой-либо строке и какому либо столбцу

    Вычислить определитель матрицы В, пользуясь свойствами определителей. Свести вычисление определителя третьего порядка к вычислению одного определителя второго порядка

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

Задание 2

1. Решить методом Крамера систему уравнений Ах = а

    Решить методом Крамера систему уравнений В x = b

    Решить методом Гаусса систему уравнений В x = b

Задание 3.

    Ах = а

    Решить матричным методом систему уравнений В x = b

Задание 4.

Вычислить ранг матрицы.

1., 2.
;

3.
4.

5.
6.

7.
8

9.
10.

Задание 5

Даны две вершины треугольника Δ АВС: А (х 1 1 ), В (х 2 2 ) и точка D (x 3 , y 3 )пересечения высот:

а) составить уравнение высот, медиан, биссектрис треугольника Δ АВС .

б) найти уравнения прямых, проходящих через вершины треугольника и параллельных сторонам.

в) определить длины высот треугольника и расстояние от точки М (х 4 , у 4 ) до сторон треугольника.

x 1

y 1

x 2

y 2

x 3

y 3

x 4

y 4

Задание 6.

Даны координаты вершин пирамиды АВС D : А (х 1 1 , z 1 ), В (х 2 2 , z 3 ) ,C (x 2 , y 2 , z 2 ) ,D (х 4 , у 4 , z 3 )

1) длину ребра АВ; .

2) угол между ребрами АВ и А D ;

3) угол меду ребром AD и гранью ABC ;

4) площадь грани ABC ;

5) объем пирамиды;

6) уравнение прямой AB ;

7) уравнение плоскости ABC ;

8) уравнение высоты, опущенной из вершиныD на грань ABC .

n

x 1

y 1

z 1

x 2

y 2

z 2

x 3

y 3

z 3

x 4

y 4

z 4

Задание 7.

Задание 8. Найти область определения функции

5.

7.

8.

9.

10.

Задание 9.Построить график функции

1.

2.

3.

4

5.

6.

7.

8.

9.

10.

Задание 10 .Найти пределы функции

1.а)
, б)
, в)
,

г)
, д)

2.а)
, б)
, в)
,

г)
, д)

3.а)
, б)
, в)
,

г)
, д)

4. а)
, б)
, в)
,

г)
, д)

5.а)
, б)
, в)
,

г)
, д)

6.а)
, б)
, в)
,

г)
, д)

7. а)
, б)
, в)
,

г)
, д)

8.а)
, б)
, в)
,

г)
, д)

9.а)
, б)
, в)
,

г)
, д)

10.а)
, б)
, в)
,

г)
, д)

Задание 11. Найти производную

1.
, б),

в)
, г)
, д)
, е)

2. а)
, б)
, в)
,

г)
, д)
,е)

3. а), б)
, в)
, г)
, д)
, e)

4. а)
, б)
, в)
,

г)
, д)
, e)

5. а)
, б)
, в)
, г)
, д)
,

е)

6. а)
, б)
, в)
, г)
, д)
,

е)

7. а)
, б),

в)
, г)
, д)
,

е)

8. а)
, б)
, в)
, г)
, д)
,

е)

9. а)
, б)
, в)
,

г)
, д)
, е)

10. а)
, б)
, в)
,

г)
, д)
, е)

Задание 12. Показать, что функция удовлетворяет равенству

Задание 13. Найти вторую производную функции, заданной параметрически.

1 .
6.

2.
7

3.
8

4.
9.

5.
10.

Задание 14. Найти пределы, пользуясь правилом Лопиталя


Задание 15. Найти экстремумы заданных функций.

1.
6.

2.
7.

3.
8.

4.
9.

5.
10.

Задание 16. Найти наибольшее и наименьшее значение на указанных отрезках и на указанных интервалах.


Задание 17. Провести полное исследование данных функций и начертить их графики.

1.
6.

2.
7.

3.
8.

4.
9.

5.
10.

Литература:

    Баврин И.И. Курс высшей математики.-М.:Просвящение,1992.-400 с.

    Бронштейн И.Н., Семендяев К.А. Справочник по математике. М, 1967г,608 с

    Общий курс высшей математики для экономистов, под ред В.И.Ермакова-М. «Инфра-М».1999 г.-655 с.

    Теуш В.Л. Курс высшей математики. - М.: Советская наука, 1958г, 270 с.

    Шипачев В.С. Высшая математика: Учебное пособие М. Высшая школа,1990.-479с.

    Высшая математика для экономистов: Учебник для вузов/Н.Ш.Кремер, Б.А.Путко и др.; М: ЮНИТИ, 2002. – 461 с.

    Валєєв К.Г, Джалладова І.А Вища математика: Навч. Посібник.

Асимптотой графика функции y = f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

На рисунке 3.10. приведены графические примеры вертикальной , горизонтальных и наклонной асимптот.

Нахождение асимптот графика основано на следующих трех теоремах.

Теорема о вертикальной асимптоте. Пусть функция у = f(х) определена в некоторой окрестности точки x 0 (исключая, возможно, саму эту точку) и хотя бы один из односторонних пределов функции равен бесконечности, т.е. Тогда прямая x = x 0 является вертикальной асимптотой графика функции у = f(х).

Очевидно, что прямая х = х 0 не может быть вертикальной асимптотой, если функция непрерывна в точке х 0 , так как в этом случае . Следовательно, вертикальные асимптоты следует искать в точках разрыва функции или на концах ее области определения.

Теорема о горизонтальной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существует конечный предел функции . Тогда прямая у = b есть горизонтальная асимптота графика функции.

Замечание. Если конечен только один из пределов , то функция имеет соответственно левостороннюю либо правостороннюю горизонтальную асимптоту.

В том случае, если , функция может иметь наклонную асимптоту.

Теорема о наклонной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существуют конечные пределы . Тогда прямая y = kx + b является наклонной асимптотой графика функции.

Без доказательства.

Наклонная асимптота, так же, как и горизонтальная, может быть правосторонней или левосторонней, если в базе соответствующих пределов стоит бесконечность определенного знака.

Исследование функций и построение их графиков обычно включает следующие этапы:

1. Найти область определения функции.

2. Исследовать функцию на четность-нечетность.

3. Найти вертикальные асимптоты, исследовав точки разрыва и поведение функции на границах области определения, если они конечны.

4. Найти горизонтальные или наклонные асимптоты, исследовав поведение функции в бесконечности.

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциал функции

Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

Применим это теорему к дифференцируемой функции: .


Таким образом, приращение функции Dу состоит из двух слагаемых: 1) линейного относительно Dх, т.е. f `(x)Dх; 2) нелинейного относительно Dх, т.е. a(Dx)Dх. При этом, так как , это второе слагаемое представляет собой бесконечно малую более высокого порядка, чем Dх (при стремлении Dх к нулю оно стремится к нулю еще быстрее).

Дифференциалом функции называется главная, линейная относительно Dх часть приращения функции, равная произведению производной на приращение независимой переменной dy = f `(x)Dх.

Найдем дифференциал функции у = х.

Так как dy = f `(x)Dх = x`Dх = Dх, то dx = Dх, т.е. дифференциал независимой переменной равен приращению этой переменной.

Поэтому формулу для дифференциала функции можно записать в виде dy = f `(x)dх. Именно поэтому одно из обозначений производной представляет собой дробь dy/dх.

Геометрический смысл дифференциала проиллюстрирован
рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение Dх. Тогда функция y = f(x) получит приращение Dy = f(x + Dх) - f(x). Проведем касательную к графику функции в точке М, которая образует угол a с положительным направлением оси абсцисс, т.е. f `(x) = tg a. Из прямоугольного треугольника MKN
KN = MN*tg a = Dх*tg a = f `(x)Dх = dy.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение Dх.

Свойства дифференциала в основном аналогичны свойствам производной:

3. d(u ± v) = du ± dv.

4. d(uv) = v du + u dv.

5. d(u/v) = (v du - u dv)/v 2 .

Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

Из определения дифференциала для функции y = f(x) дифференциал dy = f `(x)dх. Если эта функция y является сложной, т.е. y = f(u), где u = j(х), то y = f и f `(x) = f `(u)*u`. Тогда dy = f `(u)*u`dх. Но для функции
u = j(х) дифференциал du = u`dх. Отсюда dy = f `(u)*du.

Сравнивая между собой равенства dy = f `(x)dх и dy = f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменной u. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = Dx, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функции Du и только при малых Dх du » Du.

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса - речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться).

Начнём с чего-нибудь простого:

Пример 1

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв , а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

Напоминаю технику вычислений, на которой я подобно останавливался в статье непрерывность функции. Точки разрыва . В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного:
.

А вот в знаменателе получается бесконечно малое отрицательное число :
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого - они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО . Поэтому обязательно вычислим и правосторонний предел:

Вывод : односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

Первый предел конечен , значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен .

Таким образом, наша асимптота:

Вывод : прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты можно пользоваться упрощенной формулой :

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста , а значит, искомый предел будет конечным:

Ответ :

По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции , то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции , и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Пример 2

Найти асимптоты графика функции


Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта - вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдёна по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Пример 3

Найти асимптоты графика функции

Решение : Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва , поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение :

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители :
(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке :

И в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ :

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции . Правильная картинка - в конце урока.

Пример 4

Найти асимптоты графика функции

Пример 5

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше , чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста . В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая - через предел .

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Пример 6

Найти асимптоты графика функции

Решение : классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово - отлично! Пункт №1 закрыт.

2) Проверим наличие наклонных асимптот:

Первый предел конечен , поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:

Второй предел тоже конечен , следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод :

Таким образом, при график функции бесконечно близко приближается к прямой :

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы - важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).

Пример 7

Найти асимптоты графика функции

Решение : комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ :

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Пример 8

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше - наклонной асимптоты уже не будет (например, ).

Но в жизни происходят и другие чудеса:

Пример 9

Решение : функция непрерывна на всей числовой прямой, значит, вертикальные асимптоты отсутствует. Но вот наклонные вполне могут быть. Проверяем:

Вспоминаю, как ещё в ВУЗе столкнулся с похожей функцией и просто не мог поверить, что у неё есть наклонная асимптота. До тех пор, пока не вычислил второй предел:

Строго говоря, здесь две неопределённости: и , но так или иначе, нужно использовать метод решения, который разобран в Примерах 5-6 статьи о пределах повышенной сложности . Умножаем и делим на сопряженное выражение, чтобы воспользоваться формулой :

Ответ :

Пожалуй, самая популярная наклонная асимптота.

До сих пор бесконечности удавалось «стричь под одну гребёнку», но бывает, что у графика функции две разные наклонные асимптоты при и при :

Пример 10

Исследовать график функции на наличие асимптот

Решение : подкоренное выражение положительно, значит, область определения - любое действительно число, и вертикальных палок быть не может.

Проверим, существуют ли наклонные асимптоты.

Если «икс» стремится к «минус бесконечности», то:
(при внесении «икса» под квадратный корень необходимо добавить знак «минус», чтобы не потерять отрицательность знаменателя)

Выглядит необычно, но здесь неопределённость «бесконечность минус бесконечность». Умножаем числитель и знаменатель на сопряженное выражение:

Таким образом, прямая является наклонной асимптотой графика при .

С «плюс бесконечностью» всё тривиальнее:

А прямая - при .

Ответ :

Если ;
, если .

Не удержусь от графического изображения:

Это одна из ветвей гиперболы .

Не редкость, когда потенциальное наличие асимптот изначально ограничено областью определения функции :

Пример 11

Исследовать график функции на наличие асимптот

Решение : очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

1) Функция непрерывна на интервале , а значит, если вертикальная асимптота и существует, то это может быть только ось ординат. Исследуем поведение функции вблизи точки справа :

Обратите внимание, здесь НЕТ неопределённости (на таких случаях акцентировалось внимание в начале статьи Методы решения пределов) .

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопитал мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ :

Если ;
, если .

Чертёж для наглядности:

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Пример 12

Исследовать график функции на наличие асимптот

Для проверки на вертикальные асимптоты сначала нужно найти область определения функции , а затем вычислить пару односторонних пределов в «подозрительных» точках. Наклонные асимптоты тоже не исключены, поскольку функция определена на «плюс» и «минус» бесконечности.

Пример 13

Исследовать график функции на наличие асимптот

А здесь могут быть только наклонные асимптоты, причём направления , следует рассмотреть отдельно.

Надеюсь, вы отыскали нужную асимптоту =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение :
. Найдём односторонние пределы:

Прямая является вертикальной асимптотой графика функции при .
2) Наклонные асимптоты.

Прямая .
Ответ :

Чертёж к Примеру 3:

Пример 4: Решение :
1) Вертикальные асимптоты. Функция терпит бесконечный разрыв в точке . Вычислим односторонние пределы:

Примечание : бесконечно малое отрицательное число в чётной степени равно бесконечно малому положительному числу: .

Прямая является вертикальной асимптотой графика функции.
2) Наклонные асимптоты.

Прямая (ось абсцисс) является горизонтальной асимптотой графика функции при .
Ответ : . .
Значит, при у графика нет наклонной асимптоты.

Таким образом, прямая является горизонтальной асимптотой графика данной функции при .
Ответ : ось абсцисс при .

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Нули функции. Интервалы знакопостоянства функции.

Метод интервалов

Значительная доля материала, касающегося производных и исследования функций, традиционно относится к школьной программе, и данная статья не является исключением из правила. Сегодня мы потренируемся в нахождении нулей и интервалов знакопостоянства функции, а также подробно разберём метод интервалов, который можно сравнить с надёжной арматурой в стенах рассматриваемой темы.

Если же проект вашего здания находится на стадии котлована, пожалуйста, начните с вводного урока о графиках функций. Кроме того, желательно ознакомиться со статьями Область определения функции, Асимптоты графика, и, по существу, информация этой странички - логическое продолжение. Материал, естественно, будет полезен и старшеклассникам.

Асимптоты графика функции

Призрак асимптоты давно бродил по сайту чтобы, наконец, материализоваться в отдельно взятой статье и привести в особый восторг читателей, озадаченных полным исследованием функции . Нахождение асимптот графика – одна из немногих частей указанного задания, которая освещается в школьном курсе лишь в обзорном порядке, поскольку события вращаются вокруг вычисления пределов функций , а они относятся всё-таки к высшей математике. Посетители, слабо разбирающиеся в математическом анализе, намёк, думаю, понятен;-) …стоп-стоп, вы куда? Пределы – это легко!

Примеры асимптот встретились сразу же на первом уроке о графиках элементарных функций , и сейчас тема получает детальное рассмотрение.

Итак, что такое асимптота?

Представьте переменную точку , которая «ездит» по графику функции. Асимптота – это прямая , к которой неограниченно близко приближается график функции при удалении его переменной точки в бесконечность.

Примечание : определение содержательно, если вам необходима формулировка в обозначениях математического анализа, пожалуйста, обратитесь к учебнику.

На плоскости асимптоты классифицируют по их естественному расположению:

1) Вертикальные асимптоты , которые задаются уравнением вида , где «альфа» – действительное число. Популярная представительница определяет саму ось ординат,
с приступом лёгкой тошноты вспоминаем гиперболу .

2) Наклонные асимптоты традиционно записываются уравнением прямой с угловым коэффициентом . Иногда отдельной группой выделяют частный случай – горизонтальные асимптоты . Например, та же гипербола с асимптотой .

Резво пошло-поехало, ударим по теме короткой автоматной очередью:

Сколько асимптот может быть у графика функции?

Ни одной, одна, две, три,… или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции . Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса – бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.

Что значит ?

Вертикальные асимптоты графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.

Примечание : обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой – зависит от контекста.

Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции . Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова – любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат (см. Графики и свойства элементарных функций ).

Из вышесказанного также следует очевидный факт: если функция непрерывна на , то вертикальные асимптоты отсутствуют . На ум почему-то пришла парабола. Действительно, где тут «воткнёшь» прямую? …да… понимаю… последователи дядюшки Фрейда забились в истерике =)

Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.

Наклонные асимптоты графика функции

Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс бесконечности» или к «минус бесконечности». Поэтому график функции не может иметь больше двух наклонных асимптот . Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при , а график арктангенса при – двумя такими асимптотами, причём различными.

Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью . Например, …правильно догадались: .

Общее практическое правило :

Если существуют два конечных предела , то прямая является наклонной асимптотой графика функции при . Если хотя бы один из перечисленных пределов бесконечен, то наклонная асимптота отсутствует.

Примечание : формулы остаются справедливыми, если «икс» стремится только к «плюс бесконечности» или только к «минус бесконечности».

Покажем, что у параболы нет наклонных асимптот:

Предел бесконечен, значит, наклонная асимптота отсутствует. Заметьте, что в нахождении предела необходимость отпала, поскольку ответ уже получен.

Примечание : если у вас возникли (или возникнут) трудности с пониманием знаков «плюс-минус», «минус-плюс», пожалуйста, посмотрите справку в начале урока
о бесконечно малых функциях , где я рассказал, как правильно интерпретировать данные знаки.

Очевидно, что у любой квадратичной, кубической функции, многочлена 4-й и высших степеней также нет наклонных асимптот.

А теперь убедимся, что при у графика тоже нет наклонной асимптоты. Для раскрытия неопределённости используем правило Лопиталя :
, что и требовалось проверить.

При функция неограниченно растёт, однако не существует такой прямой, к которой бы её график приближался бесконечно близко .

Переходим к практической части урока:

Как найти асимптоты графика функции?

Именно так формулируется типовое задание, и оно предполагает нахождение ВСЕХ асимптот графика (вертикальных, наклонных/горизонтальных). Хотя, если быть более точным в постановке вопроса – речь идёт об исследовании на наличие асимптот (ведь таковых может и вовсе не оказаться). Начнём с чего-нибудь простого:

Пример 1

Найти асимптоты графика функции

Решение удобно разбить на два пункта:

1) Сначала проверяем, есть ли вертикальные асимптоты. Знаменатель обращается в ноль при , и сразу понятно, что в данной точке функция терпит бесконечный разрыв , а прямая, заданная уравнением , является вертикальной асимптотой графика функции . Но, прежде чем оформить такой вывод, необходимо найти односторонние пределы:

Напоминаю технику вычислений, на которой я подобно останавливался в статье Непрерывность функции. Точки разрыва . В выражение под знаком предела вместо «икса» подставляем . В числителе ничего интересного:
.

А вот в знаменателе получается бесконечно малое отрицательное число :
, оно и определяет судьбу предела.

Левосторонний предел бесконечный, и, в принципе уже можно вынести вердикт о наличии вертикальной асимптоты. Но односторонние пределы нужны не только для этого – они ПОМОГАЮТ ПОНЯТЬ, КАК расположен график функции и построить его КОРРЕКТНО . Поэтому обязательно вычислим и правосторонний предел:

Вывод : односторонние пределы бесконечны, значит, прямая является вертикальной асимптотой графика функции при .

Первый предел конечен , значит, необходимо «продолжить разговор» и найти второй предел:

Второй предел тоже конечен .

Таким образом, наша асимптота:

Вывод : прямая, заданная уравнением является горизонтальной асимптотой графика функции при .

Для нахождения горизонтальной асимптоты
можно пользоваться упрощенной формулой :

Если существует конечный предел , то прямая является горизонтальной асимптотой графика функции при .

Нетрудно заметить, что числитель и знаменатель функции одного порядка роста , а значит, искомый предел будет конечным:

Ответ :

По условию не нужно выполнять чертёж, но если в самом разгаре исследование функции , то на черновике сразу же делаем набросок:

Исходя из трёх найденных пределов , попытайтесь самостоятельно прикинуть, как может располагаться график функции . Совсем трудно? Найдите 5-6-7-8 точек и отметьте их на чертеже. Впрочем, график данной функции строится с помощью преобразований графика элементарной функции , и читатели, внимательно рассмотревшие Пример 21 указанной статьи легко догадаются, что это за кривая.

Пример 2

Найти асимптоты графика функции

Это пример для самостоятельного решения. Процесс, напоминаю, удобно разбить на два пункта – вертикальные асимптоты и наклонные асимптоты. В образце решения горизонтальная асимптота найдена по упрощенной схеме.

На практике чаще всего встречаются дробно-рациональные функции, и после тренировки на гиперболах усложним задание:

Пример 3

Найти асимптоты графика функции

Решение : Раз, два и готово:

1) Вертикальные асимптоты находятся в точках бесконечного разрыва , поэтому нужно проверить, обращается ли знаменатель в ноль. Решим квадратное уравнение :

Дискриминант положителен, поэтому уравнение имеет два действительных корня, и работы значительно прибавляется =)

В целях дальнейшего нахождения односторонних пределов квадратный трёхчлен удобно разложить на множители :
(для компактной записи «минус» внесли в первую скобку). Для подстраховки выполним проверку, мысленно либо на черновике раскрыв скобки.

Перепишем функцию в виде

Найдём односторонние пределы в точке :

И в точке :

Таким образом, прямые являются вертикальными асимптотами графика рассматриваемой функции.

2) Если посмотреть на функцию , то совершенно очевидно, что предел будет конечным и у нас горизонтальная асимптота. Покажем её наличие коротким способом:

Таким образом, прямая (ось абсцисс) является горизонтальной асимптотой графика данной функции.

Ответ :

Найденные пределы и асимптоты дают немало информации о графике функции. Постарайтесь мысленно представить чертёж с учётом следующих фактов:

Схематично изобразите вашу версию графика на черновике.

Конечно, найденные пределы однозначно не определяют вид графика, и возможно, вы допустите ошибку, но само упражнение окажет неоценимую помощь в ходе полного исследования функции . Правильная картинка – в конце урока.

Пример 4

Найти асимптоты графика функции

Пример 5

Найти асимптоты графика функции

Это задания для самостоятельного решения. Оба графика снова обладают горизонтальными асимптотами, которые немедленно детектируются по следующим признакам: в Примере 4 порядок роста знаменателя больше , чем порядок роста числителя, а в Примере 5 числитель и знаменатель одного порядка роста . В образце решения первая функция исследована на наличие наклонных асимптот полным путём, а вторая – через предел .

Горизонтальные асимптоты, по моему субъективному впечатлению, встречаются заметно чаще, чем те, которые «по-настоящему наклонены». Долгожданный общий случай:

Пример 6

Найти асимптоты графика функции

Решение : классика жанра:

1) Поскольку знаменатель положителен, то функция непрерывна на всей числовой прямой, и вертикальные асимптоты отсутствуют. …Хорошо ли это? Не то слово – отлично! Пункт №1 закрыт.

2) Проверим наличие наклонных асимптот:

Первый предел конечен , поэтому едем дальше. В ходе вычисления второго предела для устранения неопределённости «бесконечность минус бесконечность» приводим выражение к общему знаменателю:

Второй предел тоже конечен , следовательно, у графика рассматриваемой функции существует наклонная асимптота:

Вывод :

Таким образом, при график функции бесконечно близко приближается к прямой :

Заметьте, что он пересекает свою наклонную асимптоту в начале координат, и такие точки пересечения вполне допустимы – важно, чтобы «всё было нормально» на бесконечности (собственно, речь об асимптотах и заходит именно там).

Пример 7

Найти асимптоты графика функции

Решение : комментировать особо нечего, поэтому оформлю примерный образец чистового решения:

1) Вертикальные асимптоты. Исследуем точку .

Прямая является вертикальной асимптотой для графика при .

2) Наклонные асимптоты:

Прямая является наклонной асимптотой для графика при .

Ответ :

Найдённые односторонние пределы и асимптоты с высокой достоверностью позволяют предположить, как выглядит график данной функции. Корректный чертёж в конце урока.

Пример 8

Найти асимптоты графика функции

Это пример для самостоятельного решения, для удобства вычисления некоторых пределов можно почленно разделить числитель на знаменатель. И снова, анализируя полученные результаты, постарайтесь начертить график данной функции.

Очевидно, что обладателями «настоящих» наклонных асимптот являются графики тех дробно-рациональных функций, у которых старшая степень числителя на единицу больше старшей степени знаменателя. Если больше – наклонной асимптоты уже не будет (например, ).

Но в жизни происходят и другие чудеса:

Пример 9


Пример 11

Исследовать график функции на наличие асимптот

Решение : очевидно, что , поэтому рассматриваем только правую полуплоскость, где есть график функции.

Таким образом, прямая (ось ординат) является вертикальной асимптотой для графика функции при .

2) Исследование на наклонную асимптоту можно провести по полной схеме, но в статье Правила Лопиталя мы выяснили, что линейная функция более высокого порядка роста, чем логарифмическая, следовательно: (см. Пример 1 того же урока).

Вывод: ось абсцисс является горизонтальной асимптотой графика функции при .

Ответ :
, если ;
, если .

Чертёж для наглядности:

Интересно, что у вроде бы похожей функции асимптот нет вообще (желающие могут это проверить).

Два заключительных примера для самостоятельного изучения:

Пример 12

Исследовать график функции на наличие асимптот

Сколько асимптот может быть у графика функции?

Ни одной, одна, две, три,… или бесконечно много. За примерами далеко ходить не будем, вспомним элементарные функции. Парабола, кубическая парабола, синусоида вовсе не имеют асимптот. График экспоненциальной, логарифмической функции обладает единственной асимптотой. У арктангенса, арккотангенса их две, а у тангенса, котангенса - бесконечно много. Не редкость, когда график укомплектован и горизонтальными и вертикальными асимптотами. Гипербола, will always love you.

Что значит найти асимптоты графика функции?

Это значит выяснить их уравнения, ну и начертить прямые линии, если того требует условие задачи. Процесс предполагает нахождение пределов функции.

Вертикальные асимптоты графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке функция терпит бесконечный разрыв, то прямая, заданная уравнением является вертикальной асимптотой графика.

Примечание: обратите внимание, что запись используется для обозначения двух совершенно разных понятий. Точка подразумевается или уравнение прямой - зависит от контекста.

Таким образом, чтобы установить наличие вертикальной асимптоты в точке достаточно показать, что хотя бы один из односторонних пределов бесконечен. Чаще всего это точка, где знаменатель функции равен нулю. По существу, мы уже находили вертикальные асимптоты в последних примерах урока о непрерывности функции. Но в ряде случаев существует только один односторонний предел, и, если он бесконечен, то снова - любите и жалуйте вертикальную асимптоту. Простейшая иллюстрация: и ось ординат.

Из вышесказанного также следует очевидный факт: если функция непрерывна на, то вертикальные асимптоты отсутствуют. На ум почему-то пришла парабола. Действительно, где тут «воткнёшь» прямую? …да… понимаю… последователи дядюшки Фрейда забились в истерике =)

Обратное утверждение в общем случае неверно: так, функция не определена на всей числовой прямой, однако совершенно обделена асимптотами.

Наклонные асимптоты графика функции

Наклонные (как частный случай - горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к «плюс бесконечности» или к «минус бесконечности». Поэтому график функции не может иметь больше 2-х наклонных асимптот. Например, график экспоненциальной функции обладает единственной горизонтальной асимптотой при, а график арктангенса при - двумя такими асимптотами, причём различными.

Когда график и там и там сближается с единственной наклонной асимптотой, то «бесконечности» принято объединять под единой записью. Например, …правильно догадались: .