Бесконечно малые последовательности – определение и свойства. Примеры Какая величина называется бесконечно малой

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a n называется бесконечно малой , если . Например, последовательность чисел - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0 , если .

Функция называется бесконечно малой на бесконечности , если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f (x ) − a = α(x ) , .

Бесконечно большая величина

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sinx , неограниченная с обеих сторон, не является бесконечно большой при .

Последовательность a n называется бесконечно большой , если .

Функция называется бесконечно большой в окрестности точки x 0 , если .

Функция называется бесконечно большой на бесконечности , если либо .

Свойства бесконечно малых и бесконечно больших

Сравнение бесконечно малых величин

Как сравнивать бесконечно малые величины?
Отношение бесконечно малых величин образует так называемую неопределённость .

Определения

Допустим, у нас есть бесконечно малые при одном и том же величины α(x ) и β(x ) (либо, что не суть важно для определения, бесконечно малые последовательности).

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

С использованием О -символики полученные результаты могут быть записаны в следующем виде x 5 = o (x 3). В данном случае справедливы записи 2x 2 + 6x = O (x ) и x = O (2x 2 + 6x ).

Эквивалентные величины

Определение

Если , то бесконечно малые величины α и β называются эквивалентными ().
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности (как следствия из т.н. замечательных пределов):

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

Заменяя s i n 2x эквивалентной величиной 2x , получаем

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» - разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем - в его интегрировании .

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Как иронию судьбы можно рассматривать появление в середине века нестандартного анализа , который доказал, что первоначальная точка зрения - актуальные бесконечно малые - также непротиворечива и могла бы быть положена в основу анализа.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Бесконечно малая величина" в других словарях:

    БЕСКОНЕЧНО МАЛАЯ ВЕЛИЧИНА - переменная величина в некотором процессе, если она в этом процессе безгранично приближается (стремится) к нулю … Большая политехническая энциклопедия

    Бесконечно малая величина - ■ Нечто неизвестное, но имеет отношение к гомеопатии … Лексикон прописных истин

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА

Функция y=f(x) называется бесконечно малой при x→a или при x →∞, если или , т.е. бесконечно малая функция – это функция, предел которой в данной точке равен нулю.

Примеры.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x) , где a(x) – бесконечно малая при x→a.

Доказательство .

Рассмотрим основные свойства бесконечно малых функций.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Доказательство . Приведем доказательство для двух слагаемых. Пусть f(x)=α(x)+β(x) , где и . Нам нужно доказать, что при произвольном как угодно малом ε> 0 найдется δ> 0, такое, что для x , удовлетворяющих неравенству |x – a|<δ , выполняется |f(x)|< ε.

Итак, зафиксируем произвольное число ε> 0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ 1 > 0, что при |x – a|< δ 1 имеем |α(x)|< ε/ 2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ 2 > 0, что при |x – a|< δ 2 имеем | β(x)|< ε/ 2.

Возьмем δ=min{ δ 1 , δ 2 } .Тогда в окрестности точки a радиуса δ будет выполняться каждое из неравенств |α(x)|< ε/ 2 и | β(x)|< ε/ 2. Следовательно, в этой окрестности будет

|f(x)|=| α(x)+β(x) | ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,

т.е. |f(x)|< ε, что и требовалось доказать.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞ ) есть бесконечно малая функция.

Доказательство . Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a , то для произвольного ε> 0 найдется окрестность точки a , в которой будет выполняться неравенство |α(x)|< ε/M . Тогда в меньшей из этих окрестностей имеем | αf|< ε/M = ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично.

Из доказанной теоремы вытекают:

Следствие 1. Если и , то .

Следствие 2. Если и c= const, то .

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x) , предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство . Пусть . Тогда 1/f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.


СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ

Теорема 1. Если функция f(x) является бесконечно большой при x→a , то функция 1/f(x) является бесконечно малой при x→a .

Доказательство. Возьмем произвольное число ε>0 и покажем, что при некотором δ>0 (зависящим от ε) при всех x , для которых |x – a|<δ , выполняется неравенство , а это и будет означать, что 1/f(x) – бесконечно малая функция. Действительно, так как f(x) – бесконечно большая функция при x→a , то найдется δ>0 такое, что как только |x – a|<δ , так |f(x)|> 1/ ε. Но тогда для тех же x .

Примеры.

Можно доказать и обратную теорему.

Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y= 1/f(x) является бесконечно большой функцией.

Доказательство теоремы проведите самостоятельно.

Примеры.

Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A ≠ 0


ТЕОРЕМЫ О ПРЕДЕЛАХ

Теорема 1. Предел алгебраической суммы двух, трех и вообще определенного числа функций равен алгебраической сумме пределов этих функций, т.е.

Доказательство . Проведем доказательство для двух слагаемых, так как для любого числа слагаемых оно проводится так же. Пусть .Тогда f(x)=b+α(x) и g(x)=c+β(x) , где α и β – бесконечно малые функции. Следовательно,

f(x) + g(x)=(b + c) + (α(x) + β(x)) .

Так как b + c есть постоянная величина, а α(x) + β(x) – функция бесконечно малая, то

Пример. .

Теорема 2. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций:

Доказательство . Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x) и

fg = (b + α)(c + β) = bc + (bβ + cα + αβ).

Произведение bc есть величина постоянная. Функция bβ + c α + αβ на основании свойств бесконечно малых функций есть величина бесконечно малая. Поэтому .

Следствие 1. Постоянный множитель можно выносить за знак предела:

.

Следствие 2. Предел степени равен степени предела:

.

Пример. .

Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е.

.

Доказательство . Пусть . Следовательно, f(x)=b+α(x) и g(x)=c+β(x) , где α, β – бесконечно малые. Рассмотрим частное

Дробь является бесконечно малой функцией, так как числитель есть бесконечно малая функция, а знаменатель имеет предел c 2 ≠0.

Примеры.

Теорема 4. Пусть даны три функции f(x), u(x) и v(x) , удовлетворяющие неравенствам u(x)≤f(x)≤ v(x) . Если функции u(x) и v(x) имеют один и тот же предел при x→a (или x→∞ ), то и функция f(x) стремится к тому же пределу, т.е. если

, то .

Смысл этой теоремы понятен из рисунка.

Доказательство теоремы 4 можно найти, например, в учебнике: Пискунов Н. С. Дифференциальное и интегральное исчисления, т. 1 – М.: Наука, 1985.

Теорема 5. Если при x→a (или x→∞ ) функция y=f(x) принимает неотрицательные значения y≥0 и при этом стремится к пределу b , то этот предел не может быть отрицательным: b≥0 .

Доказательство . Доказательство проведем методом от противного. Предположим, что b<0 , тогда |y – b|≥|b| и, следовательно, модуль разности не стремится к нулю при x→a . Но тогда y не стремится к пределу b при x→a , что противоречит условию теоремы.

Теорема 6. Если две функции f(x) и g(x) при всех значениях аргумента x удовлетворяют неравенству f(x)≥ g(x) и имеют пределы , то имеет место неравенство b≥c .

Доказательство. По условию теоремы f(x)-g(x) ≥0 , следовательно, по теореме 5 , или .


ОДНОСТОРОННИЕ ПРЕДЕЛЫ

До сих пор мы рассматривали определение предела функции, когда x→a произвольным образом, т.е. предел функции не зависел от того, как располагалось x по отношению к a , слева или справа от a . Однако, довольно часто можно встретить функции, которые не имеют предела при этом условии, но они имеют предел, если x→a , оставаясь с одной стороны от а , слева или справа (см. рис.). Поэтому вводят понятия односторонних пределов.

Если f(x) стремится к пределу b при x стремящемся к некоторому числу a так, что x принимает только значения, меньшие a , то пишут и называют bпределом функции f(x) в точке a слева.

Исчисление бесконечно малых и больших

Исчисление бесконечно малых - вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений , составляющих основу современной высшей математики . Понятие бесконечно малой величины тесно связано с понятием предела .

Бесконечно малая

Последовательность a n называется бесконечно малой , если . Например, последовательность чисел - бесконечно малая.

Функция называется бесконечно малой в окрестности точки x 0 , если .

Функция называется бесконечно малой на бесконечности , если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f (x ) − a = α(x ) , .

Бесконечно большая величина

Последовательность a n называется бесконечно большой , если .

Функция называется бесконечно большой в окрестности точки x 0 , если .

Функция называется бесконечно большой на бесконечности , если либо .

Во всех случаях бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция x sinx не является бесконечно большой при .

Свойства бесконечно малых и бесконечно больших

Сравнение бесконечно малых величин

Как сравнивать бесконечно малые величины?
Отношение бесконечно малых величин образует так называемую неопределённость .

Определения

Допустим, у нас есть бесконечно малые при одном и том же величины α(x ) и β(x ) (либо, что не суть важно для определения, бесконечно малые последовательности).

Для вычисления подобных пределов удобно использовать правило Лопиталя .

Примеры сравнения

С использованием О -символики полученные результаты могут быть записаны в следующем виде x 5 = o (x 3). В данном случае справедливы записи 2x 2 + 6x = O (x ) и x = O (2x 2 + 6x ).

Эквивалентные величины

Определение

Если , то бесконечно малые величины α и β называются эквивалентными ().
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности: , , .

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной .

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

Заменяя s i n 2x эквивалентной величиной 2x , получаем

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» - разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем - в его интегрировании .

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок »; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Споры в Парижской Академии наук по вопросам обоснования анализа приобрели настолько скандальный характер, что Академия однажды вообще запретила своим членам высказываться на эту тему (в основном это касалось Ролля и Вариньона). В 1706 году Ролль публично снял свои возражения, однако дискуссии продолжались.

В 1734 году известный английский философ, епископ Джордж Беркли выпустил нашумевший памфлет, известный под сокращенным названием «Аналист ». Полное его название: «Аналист или рассуждение, обращенное к неверующему математику, где исследуется, более ли ясно воспринимаются или более ли очевидно выводятся предмет, принципы и умозаключения современного анализа, чем религиозные таинства и догматы веры ».

«Аналист» содержал остроумную и во многом справедливую критику исчисления бесконечно малых. Метод анализа Беркли считал несогласным с логикой и писал, что, «как бы он ни был полезен, его можно рассматривать только как некую догадку; ловкую сноровку, искусство или скорее ухищрение, но не как метод научного доказательства ». Цитируя фразу Ньютона о приращении текущих величин «в самом начале их зарождения или исчезновения», Беркли иронизирует: «это ни конечные величины, ни бесконечно малые, ни даже ничто. Не могли ли бы мы их назвать призраками почивших величин?… И как вообще можно говорить об отношении между вещами, не имеющими величины?.. Тот, кто может переварить вторую или третью флюксию [производную], вторую или третью разность, не должен, как мне кажется, придираться к чему-либо в богословии ».

Невозможно, пишет Беркли, представить себе мгновенную скорость, то есть скорость в данное мгновение и в данной точке, ибо понятие движения включает понятия о (конечных ненулевых) пространстве и времени.

Как же с помощью анализа получаются правильные результаты? Беркли пришел к мысли, что это объясняется наличием в аналитических выводах взаимокомпенсации нескольких ошибок, и проиллюстрировал это на примере параболы. Занятно, что некоторые крупные математики (например, Лагранж) согласились с ним.

Сложилась парадоксальная ситуация, когда строгость и плодотворность в математике мешали одна другой. Несмотря на использование незаконных действий с плохо определёнными понятиями, число прямых ошибок было на удивление малым - выручала интуиция. И всё же весь XVIII век математический анализ бурно развивался, не имея по существу никакого обоснования. Эффективность его была поразительна и говорила сама за себя, но смысл дифференциала по-прежнему был неясен. Особенно часто путали бесконечно малое приращение функции и его линейную часть.

В течение всего XVIII века предпринимались грандиозные усилия для исправления положения, причём в них участвовали лучшие математики столетия, однако убедительно построить фундамент анализа удалось только Коши в начале XIX века. Он строго определил базовые понятия - предел, сходимость, непрерывность, дифференциал и др., после чего актуальные бесконечно малые исчезли из науки. Некоторые оставшиеся тонкости разъяснил позднее

Теорема 2.4. Если последовательности {x n } и {y n } сходятся и при этом x n ≤ y n , n > n 0 , то lim x n ≤ lim y n .

Пусть lim xn = a,

lim yn = b и a > b. По определению 2.4 предела

последовательности по числу ε =

найдется номер N такой, что

Следовательно, n > max{n0 , N} yn <

< xn , что противоречит

условию.

Замечание. Если последовательности {xn }, {yn } сходятся и для

всех n > n0

xn < yn , то можно утверждать лишь, что lim xn

≤ lim yn .

Чтобы убедиться в этом, достаточно рассмотреть последовательности

и yn =

Непосредственно из определения 2.4 следуют и такие результаты.

Теорема 2.5. Если числовая последовательность {x n } сходится и lim x n < b (b R), то N N: x n < b, n > N .

Cледствие. Если последовательность {xn } сходится и lim xn 6= 0, то

N N: sgn xn = sgn(lim xn ), n > N.

Теорема 2.6. Пусть последовательности {x n }, {y n }, {z n } удовлетворяют условиям:

1) x n ≤ yn ≤ zn , n > n0 ,

2) последовательности {x n } и {z n } сходятся и lim x n = lim z n = a.

Тогда последовательность {y n } сходится и lim y n = a.

2.1.3 Бесконечно малые последовательности

Определение 2.7. Числовая последовательность {x n } называется бесконечно малой (коротко б.м.), если она сходится и lim x n = 0.

Согласно определению 2.4 предела числовой последовательности, определение 2.7 эквивалентно следующему:

Определение 2.8. Числовая последовательность {x n } называется бесконечно малой, если для любого положительного числа ε найдется номер N = N(ε) такой, что при всех n > N элементы x n этой последовательности удовлетворяют неравенству |x n | < ε.

Итак, {xn } - б.м. ε > 0 N = N(ε) : n > N |xn | < ε.

Из примеров 2, 3 и замечания 1 к теореме 2.3 получаем, что после-

довательности (

q −n

являются бесконечно

Свойства бесконечно малых последовательностей описываются следующими теоремами.

Теорема 2.7. Сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Пусть последовательности {xn }, {yn } - бесконечно малые. Покажем, что таковой будет и {xn + yn }. Зададим ε > 0. Тогда найдется номер

N1 = N1 (ε) такой, что

|xn | <

N > N1 ,

и найдется номер N2 = N2 (ε) такой, что

|yn | <

N > N2 .

Обозначим через N = max{N1 , N2 }. При n > N будут справедливы неравенства (2.1) и (2.2) . Поэтому при n > N

|xn + yn | ≤ |xn | + |yn | < 2 + 2 = ε.

Это означает, что последовательность {xn +yn } - бесконечно малая. Утверждение о сумме конечного числа бесконечно малых последо-

вательностей следует из доказанного по индукции.

Теорема 2.8. Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая.

Пусть {xn } - ограниченная и {yn } - бесконечно малая последовательности. По определению 2.6 ограниченной последовательности найдется число M > 0 такое, что

|xn | ≤ M, n N.

Зафиксируем произвольное число ε > 0. Так как {yn } - бесконечно малая последовательность, то найдется номер N = N(ε) такой, что

Поэтому последовательность {xn · yn } является бесконечно малой.

Cледствие 1. Произведение бесконечно малой последовательности на сходящуюся есть бесконечно малая последовательность.

Cледствие 2. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Пользуясь бесконечно малыми последовательностями, на определение сходящейся последовательности можно посмотреть по-другому.

Лемма 2.1. Для того чтобы число a являлось пределом числовой последовательности {x n } , необходимо и достаточно, чтобы имело место представление x n = a + α n , n N, в котором {α n } - бесконечно малая последовательность.

Необходимость. Пусть lim xn = a и a R. Тогда

ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Если положить αn = xn − a, n N, то получим, что {αn } - бесконечно малая последовательность и xn = a + αn , n N.

Достаточность. Пусть последовательность {xn } такова, что существует число a, для которого xn = a + αn , n N, и lim αn = 0. Зафиксируем произвольное положительное число ε. Так как lim αn = 0, то найдется номер N = N(ε) N такой, что |αn | < ε, n > N. То есть, в других обозначениях, n > N |xn − a| < ε. Это означает, что lim xn = a.

Применим лемму 2.1 к одному важному частному примеру.

Лемма 2.2. lim n n = 1.

√ √

Так как для всех n > 1 n n > 1, то n n = 1 + αn , причем αn > 0 для

всех n > 1. Поэтому n = (1 + α

)n = 1 + nα

+ αn .

Поскольку все слагаемые положительны, n

Пусть ε > 0. Так как

2/n < ε для всех n > 2/ε , то, полагая

N = max{1, }, получим, что 0 < αn < ε, n > N. Следовательно,

последовательность {αn } является бесконечно малой и, согласно лемме

2.1, lim n n = 1. √

Cледствие. Если a > 1, то lim n a = 1.√ √

Утверждение следует из неравенств 1 < n a ≤ n n , n > [a].

2.1.4 Арифметические операции с последовательностями

Пользуясь леммой 2.1 и свойствами бесконечно малых последовательностей, легко получить теоремы о пределах последовательностей, получаемых с помощью арифметических операций из сходящихся последовательностей.

|b| 3|b|

2 < |y n | < 2

Теорема 2.9. Пусть числовые последовательности {x n } и {y n } сходятся. Тогда имеют место утверждения:

1) последовательность {x n ± y n } сходится и

lim(xn ± yn ) = lim xn ± lim yn ;

2) последовательность {x n · y n } сходится и

lim(xn · yn ) = lim xn · lim yn ;

3) если lim y n 6= 0, то отношение x n /y n определено, начиная с

некоторого номера, последовательность { x n } сходится и

По теореме 2.8 и следствию 1 последовательности {a · βn }, {b · αn }, {αn · βn } являются бесконечно малыми. По теореме 2.7 последовательность {aβn + bαn + αn βn } бесконечно мала. Из представления (2.5) по лемме 2.1 и следует утверждение 2).

Обратимся к утверждению 3). По условию lim yn = b 6= 0. В силу теоремы 2.3. последовательность {|yn |} сходится и lim |yn | = |b| 6= 0. Поэтому по числу ε = |b|/2 найдется номер N такой, что n > N

0 < | 2 b| = |b| −

Следовательно, yn =6 0, и 3|b| < y n < |b| , n > N.

Таким образом, частное xn /yn определено для всех n > N, а последовательность {1/yn } ограничена. Рассмотрим для всех n > N разность

(αn b − aβn ).

Последовательность

αn b

aβn

Бесконечно малая,

ограниченные. По теореме 2.8 последовательность

− b

нечно малая. Поэтому, в силу леммы 2.1, утверждение 3) доказано. Cледствие 1. Если последовательность {xn } сходится, то для лю-

бого числа c последовательность {c · xn } сходится и lim(cxn ) = c · lim xn .

Бесконечно малые функции

Функцию %%f(x)%% называют бесконечно малой (б.м.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента предел функции равен нулю.

Понятие б.м. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.м. функции при %%a \to a + 0%% и при %%a \to a - 0%%. Обычно б.м. функции обозначают первыми буквами греческого алфавита %%\alpha, \beta, \gamma, \ldots%%

Примеры

  1. Функция %%f(x) = x%% является б.м. при %%x \to 0%%, поскольку ее предел в точке %%a = 0%% равен нулю. Согласно теореме о связи двустороннего предела с односторонними эта функция — б.м. как при %%x \to +0%%, так и при %%x \to -0%%.
  2. Функция %%f(x) = 1/{x^2}%% — б.м. при %%x \to \infty%% (а также при %%x \to +\infty%% и при %%x \to -\infty%%).

Отличное от нуля постоянное число, сколь бы оно ни было мало по абсолютному значению, не является б.м. функцией. Для постоянных чисел исключение составляет лишь нуль, поскольку функция %%f(x) \equiv 0%% имеет нулевой предел.

Теорема

Функция %%f(x)%% имеет в точке %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой конечный предел, равный числу %%b%%, тогда и только тогда, когда эта функция равна сумме этого числа %%b%% и б.м. функции %%\alpha(x)%% при %%x \to a%%, или $$ \exists~\lim\limits_{x \to a}{f(x)} = b \in \mathbb{R} \Leftrightarrow \left(f(x) = b + \alpha(x)\right) \land \left(\lim\limits_{x \to a}{\alpha(x) = 0}\right). $$

Свойства бесконечно малых функций

По правилам предельного перехода при %%c_k = 1~ \forall k = \overline{1, m}, m \in \mathbb{N}%%, следуют утверждения:

  1. Сумма конечного числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  2. Произведение любого числа б.м. функций при %%x \to a%% есть б.м. при %%x \to a%%.
  3. Произведение б.м. функций при %%x \to a%% и функции, ограниченной в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки а, есть б.м. при %%x \to a%% функция.

    Ясно, что произведение постоянной функции и б.м. при %%x \to a%% есть б.м. функция при %%x \to a%%.

Эквивалентные бесконечно малые функции

Бесконечно малые функции %%\alpha(x), \beta(x)%% при %%x \to a%% называются эквивалентными и пишутся %%\alpha(x) \sim \beta(x)%%, если

$$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\beta(x)}{\alpha(x)}} = 1. $$

Теормема о замене б.м. функций эквивалентными

Пусть %%\alpha(x), \alpha_1(x), \beta(x), \beta_1(x)%% — б.м. функции при %%x \to a%%, причем %%\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)%%, тогда $$ \lim\limits_{x \to a}{\frac{\alpha(x)}{\beta(x)}} = \lim\limits_{x \to a}{\frac{\alpha_1(x)}{\beta_1(x)}}. $$

Эквивалентные б.м. функции.

Пусть %%\alpha(x)%% — б.м. функция при %%x \to a%%, тогда

  1. %%\sin(\alpha(x)) \sim \alpha(x)%%
  2. %%\displaystyle 1 - \cos(\alpha(x)) \sim \frac{\alpha^2(x)}{2}%%
  3. %%\tan \alpha(x) \sim \alpha(x)%%
  4. %%\arcsin\alpha(x) \sim \alpha(x)%%
  5. %%\arctan\alpha(x) \sim \alpha(x)%%
  6. %%\ln(1 + \alpha(x)) \sim \alpha(x)%%
  7. %%\displaystyle\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}%%
  8. %%\displaystyle a^{\alpha(x)} - 1 \sim \alpha(x) \ln(a)%%

Пример

$$ \begin{array}{ll} \lim\limits_{x \to 0}{ \frac{\ln\cos x}{\sqrt{1 + x^2} - 1}} & = \lim\limits_{x \to 0}{\frac{\ln(1 + (\cos x - 1))}{\frac{x^2}{4}}} = \\ & = \lim\limits_{x \to 0}{\frac{4(\cos x - 1)}{x^2}} = \\ & = \lim\limits_{x \to 0}{-\frac{4 x^2}{2 x^2}} = -2 \end{array} $$

Бесконечно большие функции

Функцию %%f(x)%% называют бесконечно большой (б.б.) при %%x \to a \in \overline{\mathbb{R}}%%, если при этом стремлении аргумента функция имеет бесконечный предел.

Подобно б.м. функциям понятие б.б. функции неразрывно связано с указанием об изменении ее аргумента. Можно говорить о б.б. функции при %%x \to a + 0%% и %%x \to a - 0%%. Термин “бесконечно большая” говорит не об абсолютном значении функции, а о характере его изменения в окрестности рассматриваемой точки. Никакое постоянное число, как бы велико оно ни было по абсолютному значению, не является бесконечно большим.

Примеры

  1. Функция %%f(x) = 1/x%% — б.б. при %%x \to 0%%.
  2. Функция %%f(x) = x%% — б.б. при %%x \to \infty%%.

Если выполнены условия определений $$ \begin{array}{l} \lim\limits_{x \to a}{f(x)} = +\infty, \\ \lim\limits_{x \to a}{f(x)} = -\infty, \end{array} $$

то говорят о положительной или отрицательной б.б. при %%a%% функции.

Пример

Функция %%1/{x^2}%% — положительная б.б. при %%x \to 0%%.

Связь между б.б. и б.м. функциями

Если %%f(x)%% — б.б. при %%x \to a%% функция, то %%1/f(x)%% — б.м.

при %%x \to a%%. Если %%\alpha(x)%% — б.м. при %%x \to a%% функция, отличная от нуля в некоторой проколотой окрестности точки %%a%%, то %%1/\alpha(x)%% — б.б. при %%x \to a%%.

Свойства бесконечно больших функций

Приведем несколько свойств б.б. функций. Эти свойства непосредственно следуют из определения б.б. функции и свойств функций, имеющих конечные пределы, а также из теоремы о связи между б.б. и б.м. функциями.

  1. Произведение конечного числа б.б. функций при %%x \to a%% есть б.б. функция при %%x \to a%%. Действительно, если %%f_k(x), k = \overline{1, n}%% — б.б. функции при %%x \to a%%, то в некоторой проколотой окрестности точки %%a%% %%f_k(x) \ne 0%%, и по теореме о связи б.б. и б.м. функций %%1/f_k(x)%% — б.м. функция при %%x \to a%%. Получается %%\displaystyle\prod^{n}_{k = 1} 1/f_k(x)%% — б.м функция при %%x \to a%%, а %%\displaystyle\prod^{n}_{k = 1}f_k(x)%% — б.б. функция при %%x \to a%%.
  2. Произведение б.б. функции при %%x \to a%% и функции, которая в некоторой проколотой окрестности точки %%a%% по абсолютному значению больше положительной постоянной, есть б.б. функция при %%x \to a%%. В частности, произведение б.б. функции при %%x \to a%% и функции, имеющей в точке %%a%% конечный ненулевой предел, будет б.б. функцией при %%x \to a%%.
  3. Сумма ограниченной в некоторой проколотой окрестности точки %%a%% функции и б.б. функции при %%x \to a%% есть б.б. функция при %%x \to a%%.

    Например, функции %%x - \sin x%% и %%x + \cos x%% — б.б. при %%x \to \infty%%.

  4. Сумма двух б.б. функций при %%x \to a%% есть неопределенность. В зависимости от знака слагаемых характер изменения такой суммы может быть самым различным.

    Пример

    Пусть даны функции %%f(x)= x, g(x) = 2x, h(x) = -x, v(x) = x + \sin x%% — б.б. функции при %%x \to \infty%%. Тогда:

    • %%f(x) + g(x) = 3x%% — б.б. функция при %%x \to \infty%%;
    • %%f(x) + h(x) = 0%% — б.м. функция при %%x \to \infty%%;
    • %%h(x) + v(x) = \sin x%% не имет предела при %%x \to \infty%%.