Чем больше константа равновесия тем. Химическое равновесие

Химическое равновесие – состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем

А2 + В2 ⇄ 2AB

Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия.

При постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакций и исходных веществ, которая устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции связаны между собой. Изменение концентрации любого из этих веществ влечёт за собой изменение концентрации всех остальных веществ. В итоге устанавливается новая концентрация, но соотношение между ними отвечает константе равновесия.

58. Факторы, определяющие направление протекания химических реакций. Химические процессы должны протекать в направлении уменьшения внутренней энергии системы, т.е. в направлении, отвечающему положительному тепловому эффекту реакции.

Вторым фактором, влияющим на направленность химических реакций является принцип направленности процессов наиболее вероятному состоянию, т.е. при химических реакциях, в силу принципа направленности процессов минимуму внутренней энергии, атомы соединяясь в молекулы, при образовании которых выделяется наибольшее количество энергии.

Тенденция к переходу в состояние с наименьшей внутренней энергией проявляется при температуре в одинаковой степени. Тенденция к достижению наиболее вероятного состояния проявляется тем сильнее, чем выше температура. При низких температурах в большинстве случаев практически сказываются только влияние первой из этих тенденций, в результате чего самопроизвольно протекают экзотермические процессы. По мере возрастания температуры равновесие в химических системах всё больше и больше сдвигается в сторону реакции разложения или увеличения числа состояний атомов. При этом каждой температуре отвечает состояние равновесия, характеризующееся определённым соотношением концентрации реагирующих веществ и продуктов реакции

59. Смещение химического равновесия. Принцип Ля Шателье. Если система находится в состоянии равновесия, то она будет пребывать в нём до тех пор, пока внешние условия сохраняются постоянными. Наибольшее значение имеют случаи нарушения химического равновесия вследствие уменьшения концентрации какого-либо из веществ, участвующих в равновесии; изменение давления и температуры. Эти нарушения равновесия регламентируются принципом Ле-Шателье: если на систему, находящуюся в равновесии оказать воздействие, то в результате протекающих в ней процессов, равновесие сместится в таком направлении, что оказанное воздействие уменьшится.


60. Правило фаз Гиббса. Для любой системы, находящейся в равновесии сумма числа фаз (Р) и числа возможных состояний системы (V) больше числа компонентов (С) на 2: P + V = C+2

61. Растворы. Процесс растворения. Раствором называется твёрдое, газообразное или жидкая гомогенная система, состоящая их двух или более компонентов, относительно количества которых могут изменяться в широких пределах. Наиболее важный вид растворов – жидкий. Всякий раствор состоит из растворённых веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор.

Однородность растворов делает их очень сходными с химическими соединениями.

Отличия раствора от химических соединений состоит в том, что состав раствора может меняться в очень широких пределах. Кроме того в свойствах раствора можно обнаружить многие свойства его отдельных компонентов, чего не наблюдается в случаях химических соединений.

Непостоянство состава растворов приближает их к механическим смесям, но от них они резко отличаются своей однородностью. Растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Отделение молекул от поверхности кристалла при растворении вызывается с одной стороны собственными тепловыми колебаниями молекул, а с другой стороны – притяжением молекул растворителем.

Раствор, находящийся в равновесии с растворенным веществом называется насыщенным раствором.

62. Способы выражения состава раствора. а) Массовая доля: ω=m 1 /(m 1 +m 2) * 100% где m 1 – растворенное вещество; m 1 +m 2 – масса раствора; m 2 – масса растворителя;

б) Мольная доля N= ν 1 /ν 1 +ν 2 – это отношение количества молей растворённого вещества к сумме количества всех веществ, составляющих раствор;

в) Молярная концентрация C = V 1 / m 2 – отношение количества вещества, содержащегося в растворе, к объёму раствора (моль/л);

г) Моляйная концентрация C = V э1 /V – отношение количества вещества, содержащегося в растворе, к массе растворителя (моль \ кг);

д) Молярная концентрация эквивалента – это отношение количества вещества эквивалента, содержащегося в растворе, к объёму этого раствора (моль/л).

63.Растворимость, Закон Генри. Растворимостью называют способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества служит при данных условиях содержание его в насыщенном растворе. Однако, обычно, вещества состоящие из полярных молекул, и вещества с ионным типом связи лучше растворяются в полярных растворителях (вода, спирт, аммиак), а неполярные вещества – в неполярных растворителях (бензол и т.д.). Если растворение твёрдого вещества в жидкости сопровождается поглощение теплоты, то увеличение температуры приводит к повышению растворимости вещества.

При растворении твёрдых тел объём системы обычно изменяется незначительно. По этому растворимость твёрдых тел в жидкостях не зависит от давления.

Закон Генри: масса газа, растворяющегося при постоянной температуре в данном объёме жидкости прямо пропорциональна парциальному давлению газа.С=кр, где С – массо-объемная концентрация, р – парциальное давление газа, к – коэффициент Генри.

Следствие из закона Генри:

а) Объём газа, растворённого при постоянной температуре в данном объёме жидкости не зависит от его парциального давления.

б) Если над жидкостью находится смесь газов, то растворение каждого из них определено парциальным давлением.

64. Закон распределения. Экстракция. Закон распределения: вещество, способное растворяться в 2-х несмешивающихся растворителях распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остаётся постоянным, независимо от общего количества растворённого вещества.

Экстракция – способ извлечения вещества из раствора метод с помощью подходящего растворителя (экстрагента). Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе

65. Осмос. Закон Вант-Гоффа. Осмос- односторонняя диффузия молекул через полупроницаемую мембрану.

При измерении осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит от природы растворяющихся веществ и растворителя.

P=CRT - закон Вант-Гоффа

где P- осмотическое давление раствора (Па), C – молярность, R – универсальная газовая постоянная, T – абсолютная температура

66. Давление пара раствора. Закон Рауля. При данной температуре давление пара над жидкостью – величина постоянная. При растворении в жидкости какого-либо вещества давление насыщенного пара в этой жидкости понижается.

Пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Давление насыщенного пара зависит от природы жидкости и температуры, но не зависит от объёма сосуда, в котором находится пар.

Таким образом, давление насыщенного пара растворителя над раствором всегда ниже чем над чистым растворителем при той же температура.

Разность между давлением насыщенного пара над чистым растворителем и над раствором, называют понижением пара раствора, а отношение понижения давления пара раствора к давлению насыщенного пара над чистым растворителем называется относительным понижением давления пара над раствором.

Закон Рауля: относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества.

Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле-Шателье.

67. Водные растворы электролитов. Теория электролитической диссоциации. а) Диссоциация солей, т.е. кристаллов с ионной структурой.

б) Диссоциация при растворении кислот, т.е. полярных молекул.

Теория электролитической диссоциации.

Электролитическая диссоциация- процесс распада электролита на ионы при его растворении или плавлении.

Классическая теория электролитической диссоциации была создана С. Аррениусом и В. Оствальдом в 1887 году. Аррениус придерживался физической теории растворов, не учитывал взаимодействие электролита с водой и считал, что в растворах находятся свободные ионы. Русские химики И. А. Каблуков и В. А. Кистяковский применили для объяснения электролитической диссоциации химическую теорию растворов Д. И. Менделеева и доказали, что при растворении электролита происходит его химическое взаимодействие с водой, в результате которого электролит диссоциирует на ионы.

Классическая теория электролитической диссоциации основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т.е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс.

68. Сильные и слабые электролиты. Степень диссоциации. Степенью диссоциации электролита называется отношение числа молекул, распавшихся в данном растворе на ионы к общему числу молекул данного вещества в растворе.

Электролиты, степень диссоциации которых стремится к 1 называются сильными: NaCl, NaOH, HCl.

Электролиты, степень диссоциации которых стремится к 0 – называются слабыми: H 2 O, H 2 CO 2 , NH 4 OH.

69. Константа диссоциации. Закон разбавления Оствальда. К равновесиям, которые устанавливаются при диссоциации слабого электролита возможно применить законы, справедливые для химического равновесия.

Константа равновесия, отвечающая диссоциации слабого электролита, называется константой диссоциации.

Значение константы равновесия зависит от природы электролита и растворителя, от температуры, но не зависит от концентрации раствора. Эта величина характеризует способность данной кислоты, основания или соли распадаться на ионы. Чем выше величина константы равновесия, тем легче электролит диссоциирует на ионы.

Закон Оствальда – степень диссоциации возрастает по мере разбавления электролита.

70. Состояние сильных электролитов в растворе. Активность. Ионная сила. Для оценки состояния ионов в растворах сильных электролитов пользуются величиной, называемой активностью. Под активностью иона понимают ту эффективную условную концентрацию его, в соответствии с которой он действует при химических реакциях:

где а – активность иона, с- концентрация иона, f – коэффициент активности.

Для разбавления растворов справедливо выражение, которое связывает коэффициент активности и величину ионной силы раствора.

lgF= - 0.5Z 2 корень квадратный I

Если пользоваться значениями активностей, то законы химического равновесия можно применять и для растворов сильных электролитов.

71. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Кислоты способны взаимодействовать с основаниями. При этом образуются соли и вода.

Теория электролитической диссоциации определяет кислоты, как электролиты, диссоциирующие с образованием положительно заряженных ионов водорода.

Аналогично, основания определяют как электролиты, диссоциирующие с образованием отрицательно заряженного гидроксид-иона.

Соли: ионы гидроксида и водорода не образуются. Их рассматривают как электролиты, диссоциирующие с образованием положительно заряженных ионов, отличных от ионов водорода и отрицательно заряженных ионов, отличных от гидроксид-иона.

Лекция 3

Химическое равновесие. Закон действующих масс. Константа химического равновесия и способы ее выражения.

Химическое равновесие

В большинстве случаев химические реакции не протекают так глубоко, чтобы реагенты полностью превратились в продукты. Реакции идут до равновесия, при котором в системе имеются как продукты, так и непрореагировавшие исходные вещества, и не наблюдается дальнейшей тенденции к изменению их концентраций. Иногда количество продукта в равновесной смеси настолько превышает количество не вступивших в реакцию исходных веществ, что с практической точки зрения реакция завершается. Практически до конца доходят только такие реакции, при которых как минимум один из продуктов удаляется из сферы реакции (например, выпадает в осадок или выделяется из раствора в виде газа). Но во множестве важных случаев реакционная смесь при равновесии содержит значительные концентрации как продуктов, так и исходных веществ.

Химическое равновесие – это термодинамическое равновесие в системе, в которой возможны прямые и обратные химические реакции.

Существуют термодинамический и кинетический критерии химического равновесия. С кинетической точки зрения при химическом равновесии скорости всех реакций, идущих в двух противоположных направлениях, равны между собой, поэтому в системе не наблюдается изменения макроскопических параметров, в том числе концентраций реагирующих веществ.

С термодинамической точки зрения химическое равновесие характеризуется достижением минимального и не изменяющегося во времени значения энергии Гиббса (или энергии Гельмгольца).


Знание основных закономерностей учения о химическом равновесии совершенно необходимо химику-технологу. В промышленности, например, на химико-фармацевтических заводах, бесполезно строить сложные установки для получения тех или иных веществ, если термодинамические расчёты показывают, что реакция имеет тенденцию идти в “неправильном” направлении. Кроме того, при определении экономичности и рентабельности производства необходимо знать, как получить максимальный выход целевого продукта.

Подлинный механизм как прямой, так и обратной реакции во многих случаях сложен и часто в деталях или полностью не известен. К счастью для химиков, для того, чтобы получить правильные выводы о протекании химических процессов, нет необходимости знать настоящий механизм реакции.

Предсказание направления химической реакции, а также вычисление теоретического равновесного выхода её продуктов и состава равновесной реакционной смеси в зависимости от исходного состава, температуры и давления и является главной задачей учения о химическом равновесии.

Константа равновесия

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих масс в простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

vпр = k пр С Аа С Вb,

а скорость обратной реакции - с концентрациями продуктов уравнением

vобр = kобр С Dd С Ee .

При достижении равновесия эти скорости равны друг другу:

vпр = vобр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационной и обозначается Кс . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активности веществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, Кс и Ка практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между Кр и Кс существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Тогда для реакции в общем виде после замены парциальных давлений на концентрации получим




Заменяя выражение (d + с) - (а + b) на равное ему D n , получим окончательное выражение

Кр = Кс (RT )D n или Кс = Кр (RT )-D n ,

где D n - изменение числа молей газообразных веществ в ходе реакции:

D n = å ni прод (г) - å ni исх (г) ).

Если D n = 0, т. е. процесс идёт без изменения числа молей газообразных веществ, и Кр = Кс .

Например, для реакции гидратации этилена, протекающей в газовой фазе:

C2H4 (г) + H2O (г) Û C2H5OH (г),



В данном случае D n = 1 - (1 + 1) = -1. Значит, соотношение между константами может быть выражено таким уравнением:

Кр = Кс (RT )- 1 или Кс = Кр RT .

Таким образом, зная Кр этой реакции при каждой данной температуре, можно вычислить значение Кс и наоборот.

Расчёты с применением констант равновесия

Константы равновесия используются главным образом для получения ответов на следующие вопросы:

1. Должна ли самопроизвольно протекать реакция при определённых условиях?

2. Какова будет концентрация продуктов (равновесный выход) после установления в системе равновесия?

Определение направления протекания обратимых реакций

Так как константа равновесия представляет собой отношение констант скорости прямой и обратной реакций, то само её значение говорит о направлении процесса. Так, если константа равновесия больше единицы, то при данных условиях самопроизвольно будет осуществляться прямая реакция, если же она меньше единицы - обратная реакция.

В соответствии с принципом Ле-Шателье положение равновесия может быть смещено при изменении условий, в которых протекает реакция. Поэтому в общем случае можно оценить смещение равновесия при изменении соотношения начальных количеств веществ, участвующих в реакции. Если соотношение концентраций реагирующих веществ в начальный момент обозначить P :


то по соотношению Z и Кс можно предсказать направление реакции при заданных условиях эксперимента:

при P < K самопроизвольно протекает прямая реакция;

при P > K самопроизвольно протекает обратная реакция;

при P = K система находится в равновесии.

Чем больше значение константы равновесия отличается от единицы, тем в большей степени равновесие реакции сдвинуто в соответствующую сторону (вправо при К > 1 и влево при К < 1).

Факторы, влияющие на равновесие. Принцип Ле-Шателье -

Брауна

При равновесии прямая и обратная реакции точно компенсируют друг друга. Но насколько чувствительна эта компенсация к изменениям условий реакций? Каким способом можно изменить состояние равновесия? Эти вопросы имеют большое практическое значение, если требуется повысить выход полезного продукта реакции, напри­мер, лекарственного вещества, или, наоборот, уменьшить выход нежелательного продукта.

Если имеется возможность непрерывно выводить продукты из реакционной смеси (раствора) в виде газа или осадка, а также с помощью таких технологических операций, как вымораживание, вымывание и пр., то тем самым реагирующая система может постоянно удерживаться в неравновесном, несбалансированном состоянии. В этих условиях возникает необходимость во все новых количествах реагентов и происходит непрерывное образование продуктов. Такой способ нарушения равновесия в сторону получения желаемого продукта осуществляется без изменения константы равновесия. Но часто можно повысить выход продуктов, увеличивая константу равновесия.

Один из способов увеличения константы равновесия - изменение температуры . Так как в большинстве случаев скорости прямой и обратной реакции зависят от Т , константа равновесия тоже проявляет зависимость от температуры. Строго говоря, изменение температуры одновременно изменяет скорость и прямой, и обратной реакции. Но, если повышение температуры ускоряет прямую реакцию в большей степени, чем обратную, то константа равновесия при этом увеличится.

Температурная зависимость положения равновесия является одним из примеров общего принципа подвижного химического равновесия, называемого принципом Ле-Шателье (или Ле-Шателье - Брауна):

Если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие, положение равновесия смещается в такую сторону, чтобы противодействовать эффекту этого воздействия .

Принцип Ле-Шателье относится и к другим способам воздействия на равновесие, например, к изменению давления, но он имеет качественный характер. Количественно зависимость константы равновесия реакции от различных факторов выражается уравнениями изотермы, изобары и изохоры химической реакции, выведенными Я. Вант-Гоффом.

Влияние на равновесие начального состава реакцион­ной

смеси. Уравнение изотермы химической реакции

Максимальная работа реакции, идущей в газовой фазе при постоянных температуре и давлении, является алгебраической суммой работ, совершённых всеми участвующими в реакции веществами при переходе от начальных парциальных давлений к равновесным.

Рассмотрим газовую реакцию, выражаемую в общем виде уравнением

aA + bB Û dD + eE.

Давление р в системе с помощью уравнения Менделеева - Клапейрона может быть выражено через объём V и температуру T :

p = nRT /V ,

откуда, принимая, что суммарное число молей всех компонентов равно 1, получаем для работы расширения

pdV = (RT /V )dV ,

Так как максимальная полезная работа может быть вычислена при интегрировании выражения: V2

А’max = ò pdV ,

получаем


а так как А’max = -D Gr ,

то можно записать:


Для процессов, идущих при постоянном объёме, можно получить аналогичные выражения, в которые входит максимальная работа и изменение энергии Гельмгольца в ходе реакции. При этом парциальные давления заменяются начальными концентрациями веществ:



Уравнения (4.1) - (4.4), выведенные Я. Вант-Гоффом, называются урав­не­ниями изотермы химической реакции . Они дают возможность опре­делить, в каком направлении и до какого предела может протекать реакция в рассматриваемых условиях при заданном составе реакционной смеси при постоянной температуре.

Для стандартных условий, когда исходные парциальные давления (или исходные концентрации или активности) всех веществ-участников реакции равны единице, уравнения изотермы будут выглядеть так:

А ’max = RT ln Kp ; D Gor = - RT ln Kp (4.5)

А max = RT ln K с ; D А o r = - RT ln K с .

Отсюда следует, что определяя стандартную величину D Gor или D А o r для реакции, можно легко вычислить её константу равновесия.

Влияние на равновесный выход изменения объёма

и давления реакционной смеси

Для реакций, идущих в газовой фазе, об изменении объёма реакционной смеси можно судить по изменению числа молей реагирующих веществ

D n = å ni прод - å ni исх

Возможны три случая, соответствующих различным типам химических реакций:

а) D n < 0 (реакция идет с уменьшением объёма). Например, реакция синтеза аммиака :

N2 (г) + 3H2 (г) Û 2NH3 (г) ; D n = 2 - (1 + 3) = -2

В соответствии с принципом Ле-Шателье уменьшение объёма (при увеличении давления) будет сдвигать равновесие этой и подобных реакций вправо, а увеличение объёма (при уменьшении давления) - влево.

б) D n > 0 (реакция идет с увеличением объёма). Например, реакция разложения метанола:

CH3OH (г) Û CO (г) + 2H2 (г) ; D n = (1 + 2) - 1 = 2

В этом случае уменьшение объёма (или увеличение давления) будет сдвигать равновесие влево, а увеличение объёма (при уменьшении давления) - вправо.

в) D n = 0 (реакция идет без изменения объёма). Например, реакция хлора с бромоводородом:

Cl2 (г) + 2HBr (г) Û Br2 (г) + 2HCl (г) ; D n = (1 + 2) - (1 + 2) = 0

На выходе продуктов таких реакций изменение объёма (давления) реакционной смеси не сказывается.

Химическое равновесие в гетерогенных системах

Рассмотренные ранее закономерности относятся, главным образом, к гомогенным реакциям, т. е. к реакциям с участием веществ, находящихся в одном физическом состоянии - в виде газа или в виде раствора. Равновесия, в которых принимают участие вещества, находящиеся в двух или нескольких физических состояниях (например, газ с жидкостью или с твёрдым веществом), называются гетерогенными равновесиями.

В качестве примера рассмотрим разложение карбоната кальция CaCO3, используемого в фармации в качестве антацидного средства (сниж кислотность). Это удобная модель для рассмотрения разложения различных твёрдых веществ, в том числе и лекарственных, идущего с образованием газообразных продуктов:

CaCO3 (т) Û CaO (т) + CO2 (г)

В соответствии с законом действующих масс выражение для константы равновесия этой реакции можно написать так:


Парциальные давления CaO и CaCO3 в газовой фазе, во-первых, очень малы, а во-вторых, остаются практически постоянными в любой момент протекания реакции. Это значит, что пока твёрдые CaCO3 и CaO находятся в контакте с газом, их влияние на равновесие будет неизменным. В этом случае константа равновесия не зависит от количества твёрдой фазы. Можно разделить обе части выражения для константы равновесия на величину p CaO/p CaCO3 и принять, что

K p = p CO2 ,

где K p = Kp p CaC03/p CaO - модифицированная константа равновесия; при этом парциальные давления CaCO3 и CaO входят в величину K p в неявном виде.

Если парциальное давление СО2 над CaCO3, при данной температуре поддерживается меньшим, чем значение K p , то весь CaCO3 превратится в CaO и CO2; если же парциальное давление p CO2 больше, чем K p , то весь СaO превратится в CaCO3. Равновесное же парциальное давление CO2, равное K p при данной температуре, называется давлением диссоциации .

При достижении давления СО2 1 атм равновесие в данной реакции сдвигается в сторону диссоциации СаСО3, т. е. разложения карбоната кальция. это происходит при температуре 897оС:

Подобные рассуждения и понятие давления диссоциации могут быть распространены и на другие гетерогенные реакции с участием твёрдых веществ. В том случае, когда лекарственное вещество (в порошке или в таблетках) может реагировать с газами, находящимися в воздухе (H2O, O2, CO2), или разлагаться с их выделением, необходимо следить, чтобы парциальное давление этих газов и паров в атмосфере склада было меньше, чем давление диссоциации (или соответствующая константа равновесия K p ).

При некоторой температуре энтальпийный и энтропийный факторы реакции могут уравновешиваться, тогда устанавливается состояние равновесия, которому отвечает равенство ∆ r G Т = 0. В этом состоянии свободная энергия системы минимальна, а возможность протекания прямой и обратной реакции равновероятна, при этом в единицу времени получается столько же продуктов реакции, сколько их расходуется в обратной реакции образования исходных веществ. В таких условиях парциальные давления и концентрации всех компонентов реакции будут постоянными во времени и во всех точках системы и называются равновесными давлениями и концентрациями.

Если реакция протекает в изохорно-изотермических условиях, то условием химического равновесия является равенство Δ r F Т = 0. Из уравнений (1.12) и (1.15) следует, что при равновесии химической реакции a A(г)+b B(г)+ d D(к) ↔ e E(г)+ f F(г)

r G 0 Т = - RT ln(p e E равн p f F равн /p a A равн p b B равн) . (2.1)

Если данная гетерогенная реакция с участием газообразных компонентов протекает при постоянном объеме, то

r F 0 Т = - RT ln(c e E равн c f F равн /c a A равн c b B равн) . (2.2)

Если реакция a A(р)+b B(р)+d D(к)=e E(р)+f F(р) протекает в идеальном растворе, то из (1.12а) следует:

r G 0 Т =∆ r F 0 Т = - RT ln(c e E равн c f F равн /c a A равн c b B равн) . (2.3)

Поскольку величины ∆ r F 0 Т и ∆ r G 0 Т для данной температуры есть величины постоянные, то эти уравнения справедливы, если под знаком логарифма находятся постоянные для данной температуры выражения, получившие название констант равновесия К с и К р :

К с = (c e E равн c f F равн /c a A равн c b B равн) (2.4)

К р = (p e E равн p f F равн /p a A равн p b B равн) . (2.5)

Уравнения (2.4) и (2.5) являются математическим выражением закона действующих масс.

Для реакций с газообразными компонентами связь между К р и К с выражается уравнением: К р = К с (RT ) ∆ν , (2.6) где ∆ν =(e+f-a-b ) – изменение числа молей газов в результате реакции, а R = 0,082 атм . л . моль -1. К -1 . Следует обратить внимание, что в выражение для К с и К р не входят компоненты в более конденсированном состоянии (например, вещество D в кристаллическом состоянии).

Константу равновесия К р можно выразить также через равновесные количества молей газообразных компонентов n i равн и общее давление P 0 , при котором проводят изобарно-изотермическую реакцию. Учитывая, что парциальное давление i -ого компонента пропорционально молярной доле этого компонента p i = (n i n i )P 0 , из уравнения (2.5) получаем:

К р =(p e E равн p f F равн /p a A равн p b B равн)=(n e E равн n f F равн /n a A равн n b B равн)(P 0 n i ) ∆ν (2.6)

где Σn i = (n E равн + n F равн + n A равн + n B равн)–сумма равновесных молей всех газообразных компонентов.

Объединяя уравнения (2.1), (2.2), (2.3) с уравнениями (2.4) и (2.5) получаем выражения, часто применяемые для расчетов:

r G 0 Т = - RT lnК р и(2.7)

r F 0 Т = - RT lnК с для газофазныхреакций. (2.8)

r G 0 Т =- RT lnК с для реакций в конденсированных системах. (2.7а)

Таким образом, рассчитав энергию Гиббса реакции для заданной температуры, можно по данным формулам рассчитать К с и К р приэтой температуре. Чем больше величина константы равновесия в данных условиях, тем больше значения равновесных концентраций продуктов реакции, следовательно, тем выше выход продуктов реакции. Под выходом продукта реакции понимают отношение количества (или массы) продукта реакции, которое образовалось в данных условиях, к максимально возможному (теоретически) количеству (или массе) этого продукта при условии полного превращения какого-либо исходного вещества в продукт реакции. Очевидно, что полное (100%) превращение исходного вещества в продукт с термодинамических позиций невозможно, так как при этом константа равновесия становится бесконечно большой.

Под степенью превращения исходного вещества понимают отношение количества (или массы) исходного вещества, которое прореагировало в данных условиях, к начальному количеству (или массе) этого вещества. Если выход продукта стремится к единице (100%), то степень превращения исходного вещества также приближается к единице (100%).

Значения К р и К с при данной температуре не зависят от величин парциальных давлений и концентраций компонентов, а также общего давления в системе, но зависят от температуры. Зависимость константы равновесия от температуры можно выразить в дифференциальной форме:

(d ln K p / dT ) = ∆ r H 0 /(RT 2) , (2.9) где ∆ r Н 0 - стандартная энтальпия реакции, которую в первом приближении считают не зависящей от температуры. Как видно из (2.9), с ростом температуры константа равновесия экзотермической реакции уменьшается, а константа равновесия эндотермической реакции увеличивается.

При интегрировании выражения (2.9) с учетом указанного приближения получаем (при Т 2 > Т 1) формулу

ln(K 2 /K 1) = (∆ r H 0 /R )(1/T 1 – 1/T 2) , (2.10)

из которой следует, что чем больше абсолютная величина теплового эффекта реакции, тем сильнее изменяется значение константы равновесия с изменением температуры. Эту формулу можно использовать также для расчета величины К равн при какой-либо Т 3 , если известны значения К 2 и К 1 при температурах Т 2 и Т 1 .

Пример 10. Запишите выражение дляК с и К р и рассчитайте К р и К с реакции С(к) + СО 2 (г) = 2СО(г) при 298 К и при 1000 К. Сделайте вывод по полученным значениям о выходе продукта реакции при данных температурах и о влиянии температуры на величину константы равновесия.

Решение. Запишем выражения для констант равновесия данной реакции, принимая во внимание, что реакция гетерогенная и вещество графит С(к) находится в твердом состоянии:

К р = p 2 CO равн /p CO 2равн; К с = с 2 CO равн /с CO 2равн

Из уравнения (2.7) имеем K p =exp(-∆G 0 Т /RT) . Используя результаты примера 5, рассчитаем К р для 298 К и 1000 К:

К р 298 = exp(-120 . 10 3 /8,31 . 298)= ехр(-48,5) << 1;

K p 1000 =exp(+316/8,31 . 1000)= ехр(0,038) = 1,039.

По формуле (2.6) находим К с = К р /(RT ) ∆ν = 1,039/0,082 . 1000 = 0,013, так как ∆ν = 2-1=1. По полученным данным можно сделать вывод, что при 298 К константа равновесия К р стремится к нулю, что говорит о том, что в равновесной смеси практически отсутствуют продукты реакции и равновесие реакции сильно смещено в сторону исходных веществ. С ростом температуры величина константы равновесия возрастает (реакция эндотермическая) и при 1000 К К р уже больше 1, то есть в равновесной смеси начинают преобладать продукты реакции, их выход растет с ростом Т.

Пример 11. Для некоторой реакции А(г) = 2В(г), идущей при постоянных давлении и температуре, константа равновесия К р равна 0,02 при 400 К и 4,0 при 600 К. Определите по этим данным ∆ r H 0 298 , ∆ r S 0 298 и ∆ r G 0 298 этой реакции, а также К р при 800 К.

Решение. Пренебрегая зависимостью ∆ r H 0 и ∆ r S 0 от температуры и используя выражения (1.14) и (2.7) составим систему из двух уравнений с двумя неизвестными (T 1 =400 K, T 2 =600 K):

r G 0 Т 1 =∆ r H 0 298 T 1 ∆ r S 0 298 = -RT 1 lnК р 1 или x – 400y = -8,31.400 ln2 . 10 -2

r G 0 Т 2 =∆ r H 0 298 T 2 ∆ r S 0 298 = -RT 2 lnК р 2 или x – 600y = -8,31 . 600 ln4

Откуда х = ∆ r H 0 298 = 52833(Дж)= 52,833 кДж; y =∆ r S 0 298 =99,575Дж/К.

Значение К р при 800 К рассчитаем по формуле (2.10). Имеем:

ln(K 800 /K 400) = ln(K 800 /0,02)= (52833/8,31)(1/400 -1/800) = 7,95. Откуда К 800 = 56,55.

Пример 10. Определите температуру, при которой в реакции СаСО 3 (к) = СаО(к) + СО 2 (г) равновесное парциальное давление СО 2 р СО2 = 10 4 Па.

Решение. Для данной гетерогенной реакции запишем выражение для константы равновесия: К р = р СО2 , то есть константа равновесия равна относительному парциальному давлению СО 2 при данной температуре. Для искомой температуры К р =р СО2 = 10 4 /10 5 =0,1.Пренебрегая зависимостью ∆ r H 0 и ∆ r S 0 от температуры, воспользуемся формулами (1.14) и (2.7) и приравняем друг другу два выражения для ∆ r G 0 Т : ∆ r G 0 Т = ∆ r H 0 298 T r S 0 298 = -RT lnК р . Значения ∆ r H 0 298 и ∆ r S 0 298 определяем, как рассмотрено выше, по табличным данным: ∆rH 0 298 =178,1 кДж; ∆rS 0 298 =160,5 Дж. Имеем:

178,1 . 10 3 –Т . 160,5

∆rG 0 Т = -8,31Т ln0,1

Решая полученную систему уравнений относительно Т, находим Т =991К

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + d D,

где A и B - исходные вещества прямой реакции; C и D - продукты прямой реакции; а, в, с, и d - стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

u пр = k 1 C А а C В в (6.1)

где k 1 - константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

u обр = k 2 C C с C D d (6.2)

где k 2 - константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой u пр = u обр, следовательно

k 1 C А а C В в = k 2 C C с C D d (6.3)

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия - это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение - всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В - равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева , можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

где Dn - изменение числа молей газообразных участников реакции

Dn = (с + d ) - (а + в) (6.11)

Следовательно,

K Р = К С (RT) D n (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.


Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D - твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K < 1, то такая реакция нетехнологична; если K < 10 -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия - это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: -C А или C В ®; -C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры - в обратном направлении. (Схематично можно записать: при +Q -Т ¬; ¯Т ®; при -Q -Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления - в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления - в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 -Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.