10 основным методом цитологии изучающим ультраструктуру. Цитологическое исследование

В ходе цитологического исследования изучают структуру клеток для выявления злокачественных, доброкачественных опухолей и поражений неопухолевой природы. Основное назначение исследования – подтверждение или опровержение факта злокачественности взятых для анализа клеток.

Методы цитологического исследования основаны на изучении под микроскопом строения клеток, клеточного состава жидкостей и тканей.

Различают такие методы цитологических исследований:

  • световая микроскопия;
  • электронная микроскопия;
  • метод центрифугирования. Его используют, когда необходимо отделить мембраны клеток от общей структуры;
  • метод меченых атомов. Применяют для изучения биохимических процессов в клетках: для этого в них вводят меченый радиоактивный изотоп;
  • прижизненное изучение. Этот метод исследования позволяет изучить динамические процессы, происходящие в клетке.

Заключение цитологического исследования основывается на особенностях изменения цитоплазмы, ядра клетки, ядерно-цитоплазменного соотношения, образования комплексов и структур клеток.

Применяют цитологический анализ при профилактическом осмотре, для уточнения диагноза, во время операции, для своевременного выявления рецидивов, контроля над ходом лечения.

Цитологическое исследование мазков

В качестве материалов для анализа используют:

  • жидкости: мочу, секрет предстательной железы, мокроту, смывы, полученные при эндоскопии разных органов, выделения из сосков, отпечатки и соскобы с язвенных и эрозированных поверхностей, ран и свищей, жидкости из серозных и суставных полостей;
  • пунктаты: биологические материалы, полученные при диагностической пункции, проводимой тонкой иглой;
  • мазки из полости и шейки матки.

Большинство из указанных цитологических исследований мазков проводится при необходимости, для постановки и уточнения диагноза. Но цитологическое исследование мазка из шейки матки (мазок Папаниколау) рекомендуется проходить: один раз в год – женщинам после 19 лет, ведущим половую жизнь; два раза в год – женщинам, которые принимают гормональные контрацептивы, переболели генитальным герпесом; чаще чем два раза в год – женщинам, которые страдают бесплодием, маточными кровотечениями, ожирением, которые часто меняют половых партнеров, принимают эстрогены, у которых есть бородавки на гениталиях, выявлен генитальный герпес.

Цитологическое исследование шейки матки

Для цитологического исследования шейки матки мазок берут с наружной и внутренней частей шейки и со сводов влагалища с помощью специального деревянного шпателя. Потом его переносят на стекло и фиксируют.

Цитологическое исследование шейки матки проводят для выявления раковых изменений клеток, и в заключении врач указывает одну из пяти стадий состояния клеток:

  • стадия 1. Клетки с отклонениями не найдены;
  • стадия 2. Есть незначительные изменения в структуре клеток, вызванные воспалением внутренних половых органов. Опасение такое состояние клеток не вызывает, но женщине рекомендуют пройти дополнительное обследование и лечение;
  • стадия 3. Найдено небольшое количество клеток с отклонениями в структуре. В этом случае рекомендуется сдать мазок повторно или провести гистологическое исследование измененной ткани;
  • стадия 4. Найдены отдельные клетки со злокачественными изменениями. Окончательный диагноз не ставят, назначают дополнительное обследование;
  • стадия 5. В мазке обнаружено большое количество раковых клеток.

Достоверность такого цитологического исследования высока, но информацию оно может дать только об участке, из которого брали клетки для анализа. Для того чтобы оценить состояние маточных труб, яичников, матки следует пройти комплексное обследование.

Основными методами цитологических исследований являются световая и электронная микроскопия , т. е. использование световых и электронных микроскопов, позволяющих увидеть внешнее и внутреннее строения клеток.

Световые микроскопы позволяют в том числе наблюдать и за живыми клетками (обычно для этого используются одноклеточные организмы, клетки крови). Однако разрешающая способность световых микроскопов не так велика как у электронных. Разрешающая способность увеличительного прибора - это минимальное расстояние между двумя видимыми отдельно точками. У световых микроскопов это расстояние измеряется сотнями нанометров, а у электронных - десятками и единицами нанометров. Если в первых используется световой поток (разрешающая способность обратнопропорционально зависит от длины волны), то во вторых - поток электронов.

Существует два вида электронных микроскопов - просвечивающие и сканирующие. Разрешающая способность первых несколько выше, однако с помощью вторых можно получить объемное изображение. Для просвечивающих микроскопов готовят очень тонкие срезы, через которые проходит пучок электронов. В сканирующих микроскопах пучок электронов отражается от объекта.

В цитологических исследованиях также используется метод флуоресцентной микроскопии , который заключается в том, что к живым клеткам добавляются определенные красящие вещества, которые, соединяясь с различными компонентами клетки, начинают светиться. Таким образом, можно в световой микроскоп наблюдать клеточные структуры (хлоропласты, микротрубочки и др.).

Кроме микроскопии в современной цитологии используются и другие методы исследования. Цитохимический метод позволяет изучать химический состав клеток. Данный метод базируется на химических реакциях определенных веществ. Добавляя реагенты к клеткам, можно выявить наличие в них ДНК, определенных белков и др., а также определить их количество.

Метод радиоавтографии предполагает введение вещества, содержащего меченые (радиоактивные) атомы. Меченые молекулы через некоторое время включаются в биополимеры клетки, и по ним можно отследить протекание метаболических процессов в клетке.

С 20-х годов XX века хорошо известен такой метод цитологических исследований как центрифугирование (или метод фракционирования клеточных структур) . Он основан на том, что клеточные структуры имеют разную массу и при центрифугировании осаждаются с разной скоростью. Таким образом, если разрушить клетки, то после центрифуги смесь разделится на фракции, где внизу будут находиться более тяжелые структуры (обычно это клеточные ядра), а вверху - более легкие.

Относительно новым является метод клеточных культур , позволяющий вне организма в специально созданных условиях выращивать одинаковые клетки (колонии) из одной или нескольких исходных. Данный метод позволяет отдельно от организма изучать свойства его клеток, проводить цитологические, генетические и другие исследования.

Новым методом цитологических исследования является метод микрохирургии . С помощью микроманипулятора, соединенного с микроскопом, из клеток извлекают или вносят различные компоненты, вводят вещества.

Галилео-Галилей (1564 -1642) (итальянский философ, математик, физик и астроном, оказавший значительное влияние на науку своего времени; изобретатель микроскопа) Один из первых микроскопов (1876)

Световая микроскопия Роберт Гук (1635 -1703)1665 г – монография «Микрография» , где описаны его микроскопические и телескопические наблюдения

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ МИКРОСКОПА Современный световой микроскоп 1. Механическая часть 1. 1. Корпус 1. 2. Механический (предметный) столик 1. 3. Бинокулярная насадка 1. 4. Фокусировочный механизм 2. Осветительная система 2. 1. Источник света 2. 2. Коллектор 2. 3. Конденсор 3. Оптическая часть 3. 1. Объективы 3. 2. Окуляры

Ход лучей в стандартном микроскопе источник света конденсор образец объектив окуляр глаз Ход лучей в современном микроскопе источник света образецколлектор конденсор объектив окуля р изображение образца. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ МИКРОСКОПА

Угол раскрытия объектива: РАЗРЕШЕНИЕ МИКРОСКОПА Формула Рэлея: Разрешение микроскопа по полю – минимальное расстояние между двумя точками формируемого им изображения, пока они еще видны раздельно. где – длина волны используемого света, n – показатель преломления среды, – угол раскрытия объектива. источник света образецколлектор конденсор объектив окуля р изображение образца Формула Аббе: где NA – численная апертура объектива, равная n sin (/2). NAd 61, 0 2/sin 2 n d

2 114 n. NA ndz Разрешение микроскопа по глубине – глубина фокуса. Формула Янга:

Дифракция лазерного луча с длиной волны 650 нм, прошедшего через отверстие диаметром 0, 2 мм МИКРОСКОП КАК ДИФРАКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ dxxuixuxfu. F)]2 sin()2)2 sin()2)}