Линейная независимость векторов онлайн. Линейная зависимость системы векторов

Система векторов , называется линейно зависимой , если существуют такие числа , среди которых хотя бы одно отлично от нуля, что выполняется равенство https://pandia.ru/text/78/624/images/image004_77.gif" width="57" height="24 src=">.

Если же это равенство выполняется только в том случае, когда все , то система векторов называется линейно независимой .

Теорема. Система векторов , будет линейно зависимой тогда и только тогда, когда хотя бы один из ее векторов является линейной комбинацией остальных.

Пример 1. Многочлен является линейной комбинацией многочленов https://pandia.ru/text/78/624/images/image010_46.gif" width="88 height=24" height="24">. Многочлены составляют линейно независимую систему, так как многочлен https://pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

Пример 2. Система матриц , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" height="48 src="> является линейно независимой, так как линейная комбинация равна нулевой матрице только в том случае, когда https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21">, , https://pandia.ru/text/78/624/images/image022_26.gif" width="40" height="21"> линейно зависимой.

Решение.

Составим линейную комбинацию данных векторов https://pandia.ru/text/78/624/images/image023_29.gif" width="97" height="24">=0..gif" width="360" height="22">.

Приравнивая одноименные координаты равных векторов, получаем https://pandia.ru/text/78/624/images/image027_24.gif" width="289" height="69">

Окончательно получим

и

Система имеет единственное тривиальное решение, поэтому линейная комбинация данных векторов равна нулю только в случае, когда все коэффициенты равны нулю. Поэтому данная система векторов линейно независима.

Пример 4. Векторы линейно независимы. Какими будут системы векторов

a). ;

b). ?

Решение.

a). Составим линейную комбинацию и приравняем её к нулю

Используя свойства операций с векторами в линейном пространстве, перепишем последнее равенство в виде

Так как векторы линейно независимы, то коэффициенты при должны быть равны нулю, т. е..gif" width="12" height="23 src=">

Полученная система уравнений имеет единственное тривиальное решение .

Так как равенство (*) выполняется только при https://pandia.ru/text/78/624/images/image031_26.gif" width="115 height=20" height="20"> – линейно независимы;


b). Составим равенство https://pandia.ru/text/78/624/images/image039_17.gif" width="265" height="24 src=">(**)

Применяя аналогичные рассуждения, получим

Решая систему уравнений методом Гаусса, получим

или

Последняя система имеет бесконечное множество решений https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким образом, существует, ненулевой набор коэффициентов, для которого выполняется равенство (**) . Следовательно, система векторов – линейно зависима.

Пример 5 Система векторов линейно независима, а система векторов линейно зависима..gif" width="80" height="24">.gif" width="149 height=24" height="24">(***)

В равенстве (***) . Действительно, при система была бы линейно зависимой.

Из соотношения (***) получаем или Обозначим .

Получим

Задачи для самостоятельного решения (в аудитории)

1. Система, содержащая нулевой вектор, линейно зависима.

2. Система, состоящая из одного вектора а , линейно зависима тогда и только тогда, когда, а=0 .

3. Система, состоящая из двух векторов, линейно зависима тогда и только тогда, когда, векторы пропорциональны (т. е. один из них получается из другого умножением на число).

4. Если к линейно зависимой системе добавить вектор, то получится линейно зависимая система.

5. Если из линейно независимой системы удалить вектор, то полученная система векторов линейна независима.

6. Если система S линейно независима, но становится линейно зависимой при добавлении вектора b , то вектор b линейно выражается через векторы системы S .

c). Система матриц , , в пространстве матриц второго порядка.

10. Пусть система векторов a, b, c векторного пространства линейно независима. Докажите линейную независимость следующих систем векторов:

a). a+ b, b, c.

b). a+ https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">– произвольное число

c). a+ b, a+c, b+c.

11. Пусть a, b, c – три вектора на плоскости, из которых можно сложить треугольник. Будут ли эти векторы линейно зависимы?

12. Даны два вектора a1=(1, 2, 3, 4), a2=(0, 0, 0, 1) . Подобрать ещё два четырёхмерных вектора a3 и a4 так, чтобы система a1, a2, a3, a4 была линейно независимой.

Линейная зависимость векторов

При решении различных задач, как правило, приходится иметь дело не с одним вектором, а с некоторой совокупностью векторов одной и той же размерности. Такие совокупности называют системой векторов и обозначают

Определение. Линейной комбинацией векторов называется вектор вида

где - любые действительные числа. Также говорят, что вектор линейно выражается через векторы или разлагается по этим векторам.

Например, пусть даны три вектора: , , . Их линейной комбинацией с коэффициентами соответственно 2, 3 и 4 является вектор

Определение. Множество всевозможных линейных комбинаций системы векторов называется линейной оболочкой этой системы.

Определение. Система ненулевых векторов называется линейно зависимой , если существуют такие числа , не равные одновременно нулю, что линейная комбинация данной системы с указанными числами равна нулевому вектору:

Если же последнее равенство для данной системы векторов возможно лишь при , то эта система векторов называется линейно независимой .

Например, система двух векторов , линейно независима; система двух векторов и линейно зависима, так как .

Пусть система векторов (19) линейно зависима. Выберем в сумме (20) слагаемое, в котором коэффициент , и выразим его через остальные слагаемые:

Как видно из этого равенства, один из векторов линейно зависимой системы (19) оказался выраженным через другие векторы этой системы (или разлагается по остальным ее векторам).

Свойства линейно зависимой системы векторов

1. Система, состоящая из одного ненулевого вектора, линейно независима.

2. Система, содержащая нулевой вектор, всегда линейно зависима.

3. Система, содержащая более одного вектора, линейно зависима тогда и только тогда, когда среди ее векторов содержится, по крайней мере, один вектор, который линейно выражается через остальные.

Геометрический смысл линейной зависимости в случае двухмерных векторов на плоскости: когда один вектор выражается через другой, мы имеем , т.е. эти векторы коллинеарны, или что то же самое, находятся на параллельных прямых.

В пространственном случае линейной зависимости трех векторов они параллельны одной плоскости, т.е. компланарны . Достаточно «подправить» соответствующими сомножителями длины этих векторов, чтобы один из них стал суммой двух других или выражался через них.

Теорема. В пространстве любая система, содержащая векторов, линейно зависима при .

Пример. Выяснить, являются ли векторы линейно зависимыми.

Решение . Составим векторное равенство . Записывая в виде вектор-столбцов, получаем



Таким образом, задача свелась к решению системы

Решим систему методом Гаусса:

В результате получим систему уравнений:

которая имеет бесконечное множество решений, среди которых обязательно найдется одно ненулевое, следовательно, векторы линейно зависимые.

Выражение вида называется линейной комбинацией векторов A 1 , A 2 ,...,A n с коэффициентами λ 1, λ 2 ,...,λ n .

Определение линейной зависимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно зависимой , если существует ненулевой набор чисел λ 1, λ 2 ,...,λ n , при котором линейная комбинация векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору , то есть система уравнений: имеет ненулевое решение.
Набор чисел λ 1, λ 2 ,...,λ n является ненулевым, если хотя бы одно из чисел λ 1, λ 2 ,...,λ n отлично от нуля.

Определение линейной независимости системы векторов

Система векторов A 1 , A 2 ,...,A n называется линейно независимой , если линейная комбинация этих векторов λ 1 *A 1 +λ 2 *A 2 +...+λ n *A n равна нулевому вектору только при нулевом наборе чисел λ 1, λ 2 ,...,λ n , то есть система уравнений: A 1 x 1 +A 2 x 2 +...+A n x n =Θ имеет единственное нулевое решение.

Пример 29.1

Проверить, является ли линейно зависимой система векторов

Решение :

1. Составляем систему уравнений :

2. Решаем ее методом Гаусса . Преобразования Жордано системы приведены в таблице 29.1. При расчете правые части системы не записываются так как они равны нулю и при преобразованиях Жордана не изменяются.

3. Из последних трех строк таблицы записываем разрешенную систему, равносильную исходной системе:

4. Получаем общее решение системы :

5. Задав по своему усмотрению значение свободной переменной x 3 =1, получаем частное ненулевое решение X=(-3,2,1).

Ответ: Таким образом, при ненулевом наборе чисел (-3,2,1) линейная комбинация векторов равняется нулевому вектору -3A 1 +2A 2 +1A 3 =Θ. Следовательно, система векторов линейно зависимая .

Свойства систем векторов

Свойство (1)
Если система векторов линейно зависимая, то хотя бы один из векторов разлагается по остальным и, наоборот, если хотя бы один из векторов системы разлагается по остальным, то система векторов линейно зависимая.

Свойство (2)
Если какая-либо подсистема векторов линейно зависимая, то и вся система линейно зависимая.

Свойство (3)
Если система векторов линейно независимая, то любая ее подсистема линейно независимая.

Свойство (4)
Любая система векторов, содержащая нулевой вектор, линейно зависимая.

Свойство (5)
Система m-мерных векторов всегда является линейно зависимой, если число векторов n больше их размерности (n>m)

Базис системы векторов

Базисом системы векторов A 1 , A 2 ,..., A n называется такая подсистема B 1 , B 2 ,...,B r (каждый из векторов B 1 ,B 2 ,...,B r является одним из векторов A 1 , A 2 ,..., A n) , которая удовлетворяет следующим условиям:
1. B 1 ,B 2 ,...,B r линейно независимая система векторов;
2. любой вектор A j системы A 1 , A 2 ,..., A n линейно выражается через векторы B 1 ,B 2 ,...,B r

r — число векторов входящих в базис.

Теорема 29.1 О единичном базисе системы векторов.

Если система m-мерных векторов содержит m различных единичных векторов E 1 E 2 ,..., E m , то они образуют базис системы.

Алгоритм нахождения базиса системы векторов

Для того, чтобы найти базис системы векторов A 1 ,A 2 ,...,A n необходимо:

  • Составить соответствующую системе векторов однородную систему уравнений A 1 x 1 +A 2 x 2 +...+A n x n =Θ
  • Привести эту систему

Пусть L - произвольное линейное пространство, a i Î L, - его элементы (векторы).

Определение 3.3.1. Выражение , где , - произвольные вещественные числа, называется линейной комбинацией векторов a 1 , a 2 ,…, a n .

Если вектор р = , то говорят, что р разложен по векторам a 1 , a 2 ,…, a n .

Определение 3.3.2. Линейная комбинация векторов называется нетривиальной , если среди чисел есть хотя бы одно отличное от нуля. В противном случае, линейная комбинация называется тривиальной .

Определение 3 .3.3 . Векторы a 1 , a 2 ,…, a n называются линейно зависимыми, если существуют их нетривиальная линейная комбинация, такая что

= 0 .

Определение 3 .3.4. Векторы a 1 ,a 2 ,…, a n называются линейно независимыми, если равенство = 0 возможно лишь в случае, когда все числа l 1, l 2,…, l n одновременно равны нулю.

Отметим, что всякий ненулевой элемент a 1 можно рассматривать как линейно независимую систему, ибо равенство l a 1 = 0 возможно лишь при условии l = 0.

Теорема 3.3.1. Необходимым и достаточным условием линейной зависимости a 1 , a 2 ,…, a n является возможность разложения, по крайней мере, одного из этих элементов по остальным.

Доказательство. Необходимость. Пусть элементы a 1 , a 2 ,…, a n линейно зависимы. Это означает, что = 0 , причем хотя бы одно из чисел l 1, l 2,…, l n отлично от нуля. Пусть для определенности l 1 ¹ 0. Тогда

т. е. элемент a 1 разложен по элементам a 2 , a 3 , …, a n .

Достаточность. Пусть элемент a 1 разложен по элементам a 2 , a 3 , …, a n , т. е. a 1 = . Тогда = 0 , следовательно, существует нетривиальная линейная комбинация векторов a 1 , a 2 ,…, a n , равная 0 , поэтому они являются линейно зависимыми.

Теорема 3.3.2 . Если хотя бы один из элементов a 1 , a 2 ,…, a n нулевой, то эти векторы линейно зависимы.

Доказательство. Пусть a n = 0 , тогда = 0 , что и означает линейную зависимость указанных элементов.

Теорема 3.3.3 . Если среди n векторов какие-либо p (p < n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказательство. Пусть для определенности элементы a 1 , a 2 ,…, a p линейно зависимы. Это означает, что существует такая нетривиальная линейная комбинация, что = 0 . Указанное равенство сохранится, если добавить к обеим его частям элемент . Тогда + = 0 , при этом хотя бы одно из чисел l 1, l 2,…, lp отлично от нуля. Следовательно, векторы a 1 , a 2 ,…, a n являются линейно зависимыми.

Следствие 3.3.1. Если n элементов линейно независимы, то любые k из них линейно независимы (k < n).

Теорема 3.3.4 . Если векторы a 1 , a 2 ,…, a n - 1 линейно независимы, а элементы a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то вектор a n можно разложить по векторам a 1 , a 2 ,…, a n - 1 .



Доказательство. Так как по условию a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то существует их нетривиальная линейная комбинация = 0 , причем (в противном случае, окажутся линейно зависимыми векторы a 1 , a 2 ,…, a n - 1). Но тогда вектор

что и требовалось доказать.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.