Системы дифференциальных уравнений. Системы дифференциальных уравнен методы интегрирования Решение системы дифференциальных уравнений

Уравнений.

Введение.

Во многих задачах математики, физики и техники требуется определить несколько функций, связанных между собой несколькими дифференциальными уравнениями.

Для этого необходимо располагать, вообще говоря, таким же числом уравнений. Если каждое из этих уравнений является дифференциальным, то есть имеет вид соотношения, связывающего неизвестные функции и их производные, то говорят о системе дифференциальных уравнений.

1. Нормальная система дифференциальных уравнений первого порядка. Задача Коши.

Определение. Системой дифференциальных уравнений называется совокупность уравнений, содержащих несколько неизвестных функций и их производные, причём в каждое из уравнений входит хотя бы одна производная.

Система дифференциальных уравнений называется линейной, если неизвестные функции и их производные входят в каждое из уравнений только в первой степени.

Линейная система называется нормальной , если она разрешена относительно всех производных

В нормальной системе правые части уравнений не содержат производных искомых функций.

Решением системы дифференциальных уравнений называется совокупность функций https://pandia.ru/text/78/145/images/image003_45.gif" width="261" height="24 src="> называются начальными условиями системы дифференциальных уравнений.

Часто начальные условия записывают в виде

Общим решением (интегралом) системы дифференциальных уравнений называется совокупность « n » функций от независимой переменной x и « n » произвольных постоянных C 1 , C 2 , …, Cn :


..……………………..

которые удовлетворяют всем уравнениям этой системы.

Чтобы получить частное решение системы, удовлетворяющее заданным начальным условиям https://pandia.ru/text/78/145/images/image008_18.gif" width="44" height="24"> принимало бы заданные значения .

Записывается задача Коши для нормальной системы дифференциальных уравнений следующим образом

Теорема существования и единственности решения задачи Коши.

Для нормальной системы дифференциальных уравнений (1) теорема Коши существования и единственности решения формулируется следующим образом:

Теорема. Пусть правые части уравнений системы (1), т. е. функции , (i =1,2,…, n ) непрерывны по всем переменным в некоторой области D и имеет в ней непрерывные частные производные https://pandia.ru/text/78/145/images/image003_45.gif" width="261 height=24" height="24">, принадлежащие области D , существует единственное решение системы (1) https://pandia.ru/text/78/145/images/image013_11.gif" width="284" height="24 src=">.

2. Решение нормальной системы методом исключения.

Для решения нормальной системы дифференциальных уравнений используется метод исключения неизвестных или метод Коши.

Пусть дана нормальная система

Дифференцируем по х первое уравнение системы

https://pandia.ru/text/78/145/images/image015_5.gif" width="123" height="43 src="> их выражениями из системы уравнений (1), будем иметь

Дифференцируем полученное уравнение и поступая аналогично предыдущему, найдём

Итак, получили систему

(2)

Из первых п-1 уравнений определим y 2 , y 3 , … , yn , выразив их через

И

(3)

Подставляя эти выражения в последнее из уравнений (2), получим уравнения п-го порядка для определения y 1 :

https://pandia.ru/text/78/145/images/image005_27.gif" width="167" height="24">(5)

Дифференцируя последнее выражение п-1 раз, найдём производные

как функции от . Подставляя эти функции в уравнения (4), определим y 2 , y 3 , … , yn .

Итак, получили общее решение системы (1)

(6)

Чтобы найти частное решение системы (1) удовлетворяющее начальным условиям при

надо найти из уравнения (6) соответствующие значения произвольных постоянных С1 , С2 , … , С n .

Пример.

Найти общее решение системы уравнений:

https://pandia.ru/text/78/145/images/image029_2.gif" width="96" height="21">

за новые неизвестные функции.

Заключение.

С системами дифференциальных уравнений встречаются при изучении процессов, для описания которых одной функции недостаточно. Например, отыскание векторных линий поля требует реше­ния системы дифференциальных уравнений. Решение задач динамики криволинейного движения при­водит к системе трех дифференциальных уравнений, в которых неиз­вестными функциями являются проекции движущейся точки на оси координат, а независимой переменной - время. Позже вы узнаете, что решение задач электротехники для двух электрических цепей, нахо­дящихся в электромагнитной связи, потребует решения системы двух дифференциальных уравнений. Количество подобных примеров легко можно увеличить.

Как решить систему дифференциальных уравнений?

Предполагается, что читатель уже неплохо умеет решать дифференциальные уравнения, в частности, однородные уравнения второго порядка и неоднородные уравнения второго порядка с постоянными коэффициентами. В системах дифференциальных уравнений нет ничего сложного, и если вы уверенно расправляетесь с вышеуказанными типами уравнений, то освоение систем не составит особого труда.

Существуют два основных типа систем дифференциальных уравнений:

– Линейные однородные системы дифференциальных уравнений
– Линейные неоднородные системы дифференциальных уравнений

И два основных способа решения системы дифференциальных уравнений:

– Метод исключения . Суть метода состоит в том, что в ходе решения система ДУ сводится к одному дифференциальному уравнению.

– С помощью характеристического уравнения (так называемый метод Эйлера).

В подавляющем большинстве случаев систему дифференциальных уравнений требуется решить первым способом. Второй способ в условиях задач встречается значительно реже, за всю мою практику я решил им от силы 10-20 систем. Но и его тоже коротко рассмотрим в последнем параграфе данной статьи.

Сразу прошу прощения за теоретическую неполноту материала, но зато я включил в урок только те задания, которые реально могут встретиться на практике. То, что выпадает метеоритным дождем раз в пятилетку, вы вряд ли здесь найдете, и с такими нежданчиками следует обратиться к специализированным кирпичам по диффурам.

Линейные однородные системы дифференциальных уравнений

Простейшая однородная система дифференциальных уравнений имеет следующий вид:

Собственно, почти все практические примеры такой системой и ограничиваются =)

Что тут есть?

– это числа (числовые коэффициенты). Самые обычные числа. В частности, один, несколько или даже все коэффициенты могут быть нулевыми. Но такие подарки подкидывают редко, поэтому числа чаще всего не равны нулю.

И – это неизвестные функции. В качестве независимой переменной выступает переменная – это «как бы икс в обычном дифференциальном уравнении».

И – первые производные неизвестных функций и соответственно.

Что значит решить систему дифференциальных уравнений?

Это значит, найти такие функции и , которые удовлетворяют и первому и второму уравнению системы. Как видите, принцип очень похож на обычные системы линейных уравнений . Только там корнями являются числа, а здесь – функции.

Найденный ответ записывают в виде общего решения системы дифференциальных уравнений :

В фигурных скобках! Эти функции находятся «в одной упряжке».

Для системы ДУ можно решить задачу Коши, то есть, найти частное решение системы , удовлетворяющее заданным начальным условиям. Частное решение системы тоже записывают с фигурными скобками.

Более компактно систему можно переписать так:

Но в ходу традиционно более распространен вариант решения с производными, расписанными в дифференциалах, поэтому, пожалуйста, сразу привыкайте к следующим обозначениям:
и – производные первого порядка;
и – производные второго порядка.

Пример 1

Решить задачу Коши для системы дифференциальных уравнений с начальными условиями , .

Решение: В задачах чаще всего система встречается с начальными условиями, поэтому почти все примеры данного урока будут с задачей Коши. Но это не важно, поскольку общее решение по ходу дела все равно придется найти.

Решим систему методом исключения . Напоминаю, что суть метода – свести систему к одному дифференциальному уравнению. А уж дифференциальные уравнения, надеюсь, вы решаете хорошо.

Алгоритм решения стандартен:

1) Берем второе уравнение системы и выражаем из него :

Данное уравнение нам потребуется ближе к концу решения, и я помечу его звёздочкой. В учебниках, бывает, натыкают 500 обозначений, а потом ссылаются: «по формуле (253)…», и ищи эту формулу где-нибудь через 50 страниц сзади. Я же ограничусь одной единственной пометкой (*).

2) Дифференцируем по обе части полученного уравнения :

Со «штрихами» процесс выглядит так:

Важно, чтобы этот простой момент был понятен, далее я не буду на нём останавливаться.

3) Подставим и в первое уравнение системы :

И проведём максимальные упрощения:

Получено самое что ни на есть обычное однородное уравнение второго порядка с постоянными коэффициентами. Со «штрихами» оно записывается так: .



– получены различные действительные корни, поэтому:
.

Одна из функций найдена, пол пути позади.

Да, обратите внимание, что у нас получилось характеристическое уравнение с «хорошим» дискриминантом, а значит, мы ничего не напутали в подстановке и упрощениях.

4) Идём за функцией . Для этого берём уже найденную функцию и находим её производную. Дифференцируем по :

Подставим и в уравнение (*):

Или короче:

5) Обе функции найдены, запишем общее решение системы:

Ответ: частное решение:

Полученный ответ достаточно легко проверить, проверку осуществим в три шага:

1) Проверяем, действительно ли выполняются начальные условия , :


Оба начальных условия выполняются.

2) Проверим, удовлетворяет ли найденный ответ первому уравнению системы .

Берём из ответа функцию и находим её производную:

Подставим , и в первое уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет первому уравнению системы.

3) Проверим, удовлетворяет ли ответ второму уравнению системы

Берём из ответа функцию и находим её производную:

Подставим , и во второе уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет второму уравнению системы.

Проверка завершена. Что проверено? Проверено выполнение начальных условий. И, самое главное, показан тот факт, что найденное частное решение удовлетворяет каждому уравнению исходной системы .

Аналогично можно проверить и общее решение , проверка будет даже еще короче, так как не надо проверять выполнение начальных условий.

Теперь вернемся к прорешанной системе и зададимся парой вопросов. Решение начиналось так: мы взяли второе уравнение системы и выразили из него . А можно ли было выразить не «икс», а «игрек»? Если мы выразим , то это нам ничего не даст – в данном выражении справа есть и «игрек» и «икс», поэтому нам не удастся избавиться от переменной и свести решение системы к решению одного дифференциального уравнения.

Вопрос второй. Можно ли было начать решение не со второго, а с первого уравнения системы? Можно. Смотрим на первое уравнение системы: . В нём у нас два «икса» и один «игрек», поэтому необходимо выразить строго «игрек» через «иксы»: . Далее находится первая производная: . Потом следует подставить и во второе уравнение системы. Решение будет полностью равноценным, с тем отличием, что сначала мы найдем функцию , а затем .

И как раз на второй способ будет пример для самостоятельного решения:

Пример 2

Найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

В образце решения, который приведен в конце урока, из первого уравнения выражен и вся пляска начинается от этого выражения. Попытайтесь самостоятельно по пунктам провести зеркальное решение, не заглядывая в образец.

Можно пойти и путём Примера №1 – из второго уравнения выразить (заметьте, что выразить следует именно «икс»). Но этот способ менее рационален, по той причине, что у нас получилась дробь, что не совсем удобно.

Линейные неоднородные системы дифференциальных уравнений

Практически то же самое, только решение будет несколько длиннее.

Неоднородная система дифференциальных уравнений, которая в большинстве случаев может встретиться вам в задачах, имеет следующий вид:

По сравнению с однородной системой в каждом уравнении дополнительно добавляется некоторая функция, зависящая от «тэ». Функции могут быть константами (причем, по крайне мере одна из них не равна нулю), экспонентами, синусами, косинусами и т.д.

Пример 3

Найти частное решение системы линейных ДУ, соответствующее заданным начальным условиям

Решение: Дана линейная неоднородная система дифференциальных уравнений, в качестве «добавок» выступают константы. Используем метод исключения , при этом сам алгоритм решения полностью сохраняется. Для разнообразия я начну как раз с первого уравнения.

1) Из первого уравнения системы выражаем:

Это важная штуковина, поэтому я её снова замаркирую звёздочкой. Скобки лучше не раскрывать, зачем лишние дроби?

И еще раз заметьте, что из первого уравнения выражается именно «игрек» – через два «икса» и константу.

2) Дифференцируем по обе части:

Константа (тройка) исчезла, ввиду того, что производная константы равна нулю.

3) Подставим и во второе уравнение системы :

Сразу после подстановки целесообразно избавиться от дробей, для этого каждую часть уравнения умножаем на 5:

Теперь проводим упрощения:

В результате получено линейное неоднородное уравнение второго порядка с постоянными коэффициентами. Вот, по сути, и всё отличие от решения однородной системы уравнений, разобранного в предыдущем параграфе.

Примечание: Тем не менее, в неоднородной системе иногда может получиться и однородное уравнение .

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни, поэтому:
.

Корни характеристического уравнения опять получились «хорошими», значит, мы на верном пути.

Частное решение неоднородного уравнения ищем в виде .
Найдем первую и вторую производную:

Подставим в левую часть неоднородного уравнения:

Таким образом:

Следует отметить, что частное решение легко подбирается устно, и вполне допустимо вместо длинных выкладок написать: «Очевидно, что частное решение неоднородного уравнения: ».

В результате:

4) Ищем функцию . Сначала находим производную от уже найденной функции :

Не особо приятно, но подобные производные в диффурах приходится находить часто.

Шторм в самом разгаре, и сейчас будет девятый вал. Привяжите себя канатом к палубе.

Подставим
и в уравнение (*):

5) Общее решение системы:

6) Найдем частное решение, соответствующее начальным условиям :

Окончательно, частное решение:

Вот видите, какая история со счастливым концом, теперь можно безбоязненно плавать на шлюпках по безмятежному морю под ласковым солнцем.

Ответ: частное решение:

Кстати, если начать решать эту систему со второго уравнения, то вычисления получатся заметно проще (можете попробовать), но многие посетители сайта просили разбирать и более трудные вещи. Как тут откажешь? =) Пусть будут и более серьезные примеры.

Пример проще для самостоятельного решения:

Пример 4

Найти частное решение линейной неоднородной системы дифференциальных уравнений, соответствующее заданным начальным условиям

Данная задача решена мной по образцу Примера №1, то есть, из второго уравнения выражен «икс». Решение и ответ в конце урока.

В рассмотренных примерах я не случайно использовал различные обозначения, применял разные пути решения. Так, например, производные в одном и том же задании записывались тремя способами: . В высшей математике не нужно бояться всяких закорючек, главное, понимать алгоритм решения.

Метод характеристического уравнения (метод Эйлера)

Как уже отмечалось в начале статьи, с помощью характеристического уравнения систему дифференциальных уравнений требуют решить довольно редко, поэтому в заключительном параграфе я рассмотрю всего лишь один пример.

Пример 5

Дана линейная однородная система дифференциальных уравнений

Найти общее решение системы уравнений с помощью характеристического уравнения

Решение: Смотрим на систему уравнений и составляем определитель второго порядка:

По какому принципу составлен определитель, думаю, всем видно.

Составим характеристическое уравнение, для этого из каждого числа, которое располагается на главной диагонали , вычитаем некоторый параметр :

На чистовике, естественно, сразу следует записать характеристическое уравнение, я объясняю подробно, по шагам, чтобы было понятно, что откуда взялось.

Раскрываем определитель:

И находим корни квадратного уравнения:

Если характеристическое уравнение имеет два различных действительных корня , то общее решение системы дифференциальных уравнений имеет вид:

Коэффициенты в показателях экспонент нам уже известны, осталось найти коэффициенты

1) Рассмотрим корень и подставим его в характеристическое уравнение:

(эти два определителя на чистовике тоже можно не записывать, а сразу устно составить нижеприведенную систему)

Из чисел определителя составим систему двух линейных уравнений с двумя неизвестными:

Из обоих уравнений следует одно и то же равенство:

Теперь нужно подобрать наименьшее значение , такое, чтобы значение было целым. Очевидно, что следует задать . А если , то

На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализа – нахождение частного решения системы дифференциальных уравнений методом операционного исчисления . Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений , что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения . Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной – с «довесками» в виде функций и в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении .
2) В скобочках начальных условий находятся строго нули , и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом . Из справочных материалов потребуется та же таблица оригиналов и изображений .

Пример 1


, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ данный переход обычно прост:

Используя табличные формулы №№1,2, учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки». Используя те же преобразования №№1,2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует или . В правые части уравнений необходимо «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить , а на вторых позициях :

Полученную систему уравнений с двумя неизвестными обычно решают по формулам Крамера . Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы :

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом . Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов , с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:


Чайникам советую записывать разложенное операторное решение в следующем виде:
– так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:


Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом . Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:



Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Этот раздел мы решили посвятить решению систем дифференциальных уравнений простейшего вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 , в которых a 1 , b 1 , c 1 , a 2 , b 2 , c 2 - некоторые действительные числа. Наиболее эффективным для решения таких систем уравнений является метод интегрирования. Также рассмотрим решение примера по теме.

Решением системы дифференциальных уравнений будет являться пара функций x (t) и y (t) , которая способна обратить в тождество оба уравнения системы.

Рассмотрим метод интегрирования системы ДУ d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2 . Выразим х из 2 -го уравнения системы для того, чтобы исключить неизвестную функцию x (t) из 1 -го уравнения:

d y d t = a 2 x + b 2 y + c 2 ⇒ x = 1 a 2 d y d t - b 2 y - c 2

Выполним дифференцирование 2 -го уравнения по t и разрешим его уравнение относительно d x d t:

d 2 y d t 2 = a 2 d x d t + b 2 d y d t ⇒ d x d t = 1 a 2 d 2 y d t 2 - b 2 d y d t

Теперь подставим результат предыдущих вычислений в 1 -е уравнение системы:

d x d t = a 1 x + b 1 y + c 1 ⇒ 1 a 2 d 2 y d t 2 - b 2 d y d t = a 1 a 2 d y d t - b 2 y - c 2 + b 1 y + c 1 ⇔ d 2 y d t 2 - (a 1 + b 2) · d y d t + (a 1 · b 2 - a 2 · b 1) · y = a 2 · c 1 - a 1 · c 2

Так мы исключили неизвестную функцию x (t) и получили линейное неоднородное ДУ 2 -го порядка с постоянными коэффициентами. Найдем решение этого уравнения y (t) и подставим его во 2 -е уравнение системы. Найдем x (t) . Будем считать, что на этом решение системы уравнений будет закончено.

Пример 1

Найдите решение системы дифференциальных уравнений d x d t = x - 1 d y d t = x + 2 y - 3

Решение

Начнем с первого уравнения системы. Разрешим его относительно x:

x = d y d t - 2 y + 3

Теперь выполним дифференцирование 2 -го уравнения системы, после чего разрешим его относительно d x d t: d 2 y d t 2 = d x d t + 2 d y d t ⇒ d x d t = d 2 y d t 2 - 2 d y d t

Полученный в ходе вычислений результат мы можем подставить в 1 -е уравнение системы ДУ:

d x d t = x - 1 d 2 y d t 2 - 2 d y d t = d y d t - 2 y + 3 - 1 d 2 y d t 2 - 3 d y d t + 2 y = 2

В результате преобразований мы получили линейное неоднородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами d 2 y d t 2 - 3 d y d t + 2 y = 2 . Если мы найдем его общее решение, то получим функцию y (t) .

Общее решение соответствующего ЛОДУ y 0 мы можем найти путем вычислений корней характеристического уравнения k 2 - 3 k + 2 = 0:

D = 3 2 - 4 · 2 = 1 k 1 = 3 - 1 2 = 1 k 2 = 3 + 1 2 = 2

Корни, которые мы получили, являются действительными и различными. В связи с этим общее решение ЛОДУ будет иметь вид y 0 = C 1 · e t + C 2 · e 2 t .

Теперь найдем частное решение линейного неоднородного ДУ y ~ :

d 2 y d t 2 - 3 d y d t + 2 y = 2

Правая часть записи уравнения представляет собой многочлен нулевой степени. Это значит, что частное решение будем искать в виде y ~ = A , где А – это неопределенный коэффициент.

Определить неопределенный коэффициент мы можем из равенства d 2 y ~ d t 2 - 3 d y ~ d t + 2 y ~ = 2:
d 2 (A) d t 2 - 3 d (A) d t + 2 A = 2 ⇒ 2 A = 2 ⇒ A = 1

Таким образом, y ~ = 1 и y (t) = y 0 + y ~ = C 1 · e t + C 2 · e 2 t + 1 . Одну неизвестную функцию мы нашли.

Теперь подставим найденную функцию во 2 -е уравнение системы ДУ и разрешим новое уравнение относительно x (t) :
d (C 1 · e t + C 2 · e 2 t + 1) d t = x + 2 · (C 1 · e t + C 2 · e 2 t + 1) - 3 C 1 · e t + 2 C 2 · e 2 t = x + 2 C 1 · e t + 2 C 2 · e 2 t - 1 x = - C 1 · e t + 1

Так мы вычислили вторую неизвестную функцию x (t) = - C 1 · e t + 1 .

Ответ: x (t) = - C 1 · e t + 1 y (t) = C 1 · e t + C 2 · e 2 t + 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

................................ 1

1. Введение.................................................................................................... 2

2. Системы дифференциальных уравнений 1-го порядка.......................... 3

3. Системы линейных дифференциальных уравнений 1-го порядка......... 2

4. Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами.............................................................................................. 3

5. Системы неоднородных дифференциальных уравнений 1-го порядка с постоянными коэффициентами.............................................................................................. 2

Преобразование Лапласа ................................................................................ 1

6. Введение.................................................................................................... 2

7. Свойства преобразования Лапласа......................................................... 3

8. Приложения преобразования Лапласа................................................... 2

Введение в интегральные уравнения ............................................................... 1

9. Введение.................................................................................................... 2

10. Элементы общей теории линейных интегральных уравнений............. 3

11. Понятие об итерационном решении интегральных уравнений Фредгольма 2-го рода.......................................................................................................................... 2

12. Уравнение Вольтерра............................................................................ 2

13. Решение уравнений Вольтерра с разностным ядром с использованием преобразования Лапласа................................................................................ 2


Системы обыкновенных дифференциальных уравнений

Введение

Системы обыкновенных дифференциальных уравнений состоят из нескольких уравнений, содержащих производные неизвестных функций одного переменного. В общем случае такая система имеет вид

где – неизвестные функции, t – независимая переменная, – некоторые заданные функции, индекс нумерует уравнения в системе. Решить такую систему – значит найти все функции , удовлетворяющие этой системе.

В качестве примера рассмотрим уравнение Ньютона, описывающее движение тела массы под действием силы :

где – вектор, проведенный из начала координат к текущему положению тела. В декартовой системе координат его компонентами являются функции Таким образом, уравнение (1.2) сводится к трем дифференциальным уравнениям второго порядка

Для нахождения функций в каждый момент времени , очевидно, надо знать начальное положение тела и его скорость в начальный момент времени – всего 6 начальных условий (что отвечает системе из трёх уравнений второго порядка):

Уравнения (1.3) вместе с начальными условиями (1.4) образуют задачу Коши, которая, как ясно из физических соображений, имеет единственное решение, дающее конкретную траекторию движения тела, если сила удовлетворяет разумным критериям гладкости.

Важно отметить, что эта задача может быть сведена к системе из 6 уравнений первого порядка введением новых функций. Обозначим функции как , и введем три новые функции , определенные следующим образом

Систему (1.3) теперь можно переписать в виде

Таким образом, мы пришли к системе из шести дифференциальных уравнений первого порядка для функций Начальные условия для этой системы имеют вид

Первые три начальных условия дают начальные координаты тела, последние три – проекции начальной скорости на оси координат.

Пример 1.1. Свести систему двух дифференциальных уравнений 2-го порядка

к системе из четырех уравнений 1-го порядка.

Решение. Введем следующие обозначения:

При этом исходная система примет вид

Еще два уравнения дают введенные обозначения:

Окончательно, составим систему дифференциальных уравнений 1-го порядка, эквивалентную исходной системе уравнений 2-го порядка

Эти примеры иллюстрируют общую ситуацию: любая система дифференциальных уравнений может быть сведена к системе уравнений 1-го порядка. Таким образом, в дальнейшем мы можем ограничиться изучением систем дифференциальных уравнений 1-го порядка.

Системы дифференциальных уравнений 1-го порядка

В общем виде систему из n дифференциальных уравнений 1-го порядка можно записать следующим образом:

где – неизвестные функции независимой переменной t , – некоторые заданные функции. Общее решение системы (2.1) содержит n произвольных констант, т.е. имеет вид:

При описании реальных задач с помощью систем дифференциальных уравнений конкретное решение, или частное решение системы находится из общего решения заданием некоторых начальных условий . Начальное условие записывается для каждой функции и для системы n уравнений 1-го порядка выглядит так:

Решения определяют в пространстве линию, которая называется интегральной линией системы (2.1).

Сформулируем теорему существования и единственности решения для систем дифференциальных уравнений.

Теорема Коши. Система дифференциальных уравнений 1-го порядка (2.1) вместе с начальными условиями (2.2) имеет единственное решение (т.е. из общего решения определяется единственный набор констант ), если функции и их частные производные по всем аргументам ограничены в окрестности этих начальных условий.

Естественно речь идет о решении в какой-то области переменных .

Решение системы дифференциальных уравнений можно рассматривать как вектор-функцию X , компонентами которого являются функции а набор функций – как вектор-функцию F , т.е.

Используя такие обозначения, можно кратко переписать исходную систему (2.1) и начальные условия (2.2) в так называемой векторной форме :

Одним из методов решения системы дифференциальных уравнений является сведение этой системы к одному уравнению более высокого порядка. Из уравнений (2.1), а также уравнений, полученных их дифференцированием, можно получить одно уравнение n -го порядка для любой из неизвестных функций Интегрируя его, находят неизвестную функцию Остальные неизвестные функции получаются из уравнений исходной системы и промежуточных уравнений, полученных при дифференцировании исходных.

Пример 2.1. Решить систему двух дифференциальных первого порядка

Решение . Продифференцируем второе уравнение:

Производную выразим через первое уравнение

Из второго уравнения

Мы получили линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами. Его характеристическое уравнение

откуда получаем Тогда общим решением данного дифференциального уравнения будет

Мы нашли одну из неизвестных функций исходной системы уравнений. Пользуясь выражением можно найти и :

Решим задачу Коши при начальных условиях

Подставим их в общее решение системы

и найдем константы интегрирования:

Таким образом, решением задачи Коши будут функции

Графики этих функций изображены на рисунке 1.

Рис. 1. Частное решение системы примера 2.1 на интервале

Пример 2.2. Решить систему

сведя его к одному уравнению 2-го порядка.

Решение. Дифференцируя первое уравнение, получим

Пользуясь вторым уравнением, приходим к уравнению второго порядка для x :

Нетрудно получить его решение, а затем и функцию , подставив найденное в уравнение . В результате имеем следующее решение системы:

Замечание. Мы нашли функцию из уравнения . При этом на первый взгляд кажется, что можно получить то же самое решение, подставив известное во второе уравнение исходной системы

и проинтегрировав его. Если находить таким образом, то в решении появляется третья, лишняя константа:

Однако, как нетрудно проверить, исходной системе функция удовлетворяет не при произвольном значении , а только при Таким образом, определять вторую функцию следует без интегрирования.

Сложим квадраты функций и :

Полученное уравнение дает семейство концентрических окружностей с центром в начале координат в плоскости (см. рисунок 2). Полученные параметрические кривые называются фазовыми кривыми , а плоскость, в которой они расположены – фазовой плоскостью .

Подставляя какие-либо начальные условия в исходное уравнение, можно получить определенные значения констант интегрирования , а значит окружность с определенным радиусом в фазовой плоскости. Таким образом, каждому набору начальных условий соответствует конкретная фазовая кривая. Возьмем, например, начальные условия . Их подстановка в общее решение дает значения констант , таким образом, частное решение имеет вид . При изменении параметра на интервале мы следуем вдоль фазовой кривой по часовой стрелке: значению отвечает точка начального условия на оси , значению - точка на оси , значению - точка на оси , значению - точка на оси , при мы возвращаемся в начальную точку .