Падение с высоты формула. Определение скорости свободного падения

13 безвоздушном пространстве на свободно падаю­щее тело действует ускорение свободного падения g = = 9,81 м/с 2 , сила сопротивления Q отсутствует. Поэтому скорость падения тел в безвоздушном пространстве с течением времени будет постоянно возрастать под дей­ствием ускорения свободного иадения V=gt.

При падении в воздухе на тело, кроме ускорения свободного падения, будет действовать в противополож­ном направлении сила сопротивления воздуха Q:

Когда сила тяжести тела G = mg уравновесится си­лой сопротивления Q, дальнейшего роста скорости сво­бодного падения тела происходить не будет, то есть до­стигнуто равновесие:

Это означает, что тело достигло критической равно­весной скорости падения:

Из формулы видно, что критическая скорость паде­ния тел в воздухе зависит от веса тела, коэффициента сопротивления тела С х площади сопротивления тела. Коэффициент сопротивления С х человека может изме­няться в широких пределах. Среднее его значение С х = = 0,195; максимальное значение примерно 150%, а ми­нимальное 50% от среднего.

Обычно вместо миделя (S) условно берется квадрат высоты тела - . Собственный рост каждому известен. Взять величину роста в квадрате вполне достаточно для расчета, то есть:



Максимальное значение коэффициента лобового со­противления получаем при положении тела плашмя ли­цом вниз, минимальное - при положении, близком к вер­тикальному падению вниз головой.

На рис. 54 показано изменение коэффициента сопро­тивления тела парашютиста в зависимости от его поло­жения. 0° соответствует падению тела плашмя лицом вниз, 90° соответствует падению вниз головой, 180° - плашмя вниз спиной.

Такой диапазон изменения коэффициента сопротив­ления дает следующие возможные значения равновес­ной скорости падения парашюта в воздухе нормальной плотности (то есть на наших рабочих высотах). При падении головой вниз - 58-60 м/с; при падении плаш­мя- 41-43 м/с. Например, при весе парашютиста

90 кг, росте 1,7 м, плотности 0,125 , среднем

коэффициенте сопротивления С х = 0,195 скорость паде­ния будет равна:


Если при этих условиях продолжать падение вниз головой, то равновесная скорость падения будет равна приблизительно 59 м/с.

При выполнении комплекса фигур в свободном па­дении коэффициент сопротивления колеблется около своего среднего значения. При изменении веса парашю­тиста на 10 кг скорость его падения изменяется прибли­зительно на 1 м/с, то есть на 2%.

Из всего вышеизложенного становится понятно, по­чему парашютисты перед выполнением фигур старают­ся достигать максимальной скорости падения. Следует заметить, что при падении тела в любом положении рав­новесная скорость достигается на 11 -12-й секунде. По­этому парашютисту нет смысла делать разгон дольше 12-16 с. Большого эффекта при этом не достигается, однако теряется высота, запас которой никогда не бы­вает, лишним.

Для наглядности можно привести пример: макси­мальная скорость падения при прыжке с высоты 1000 м достигается на 12-й секунде падения. При прыжке с вы-соты 2000м - на 12.5-й секунде, а при прыжке с высо-ты 4000 м- на 14-й секунде.

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря - падение в пустоте. Конечно, отсутствие сопротивления воздуха - это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения - ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля - не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения - на полюсах (≈ 9 , 83 м с 2) , а самое малое - на экваторе (≈ 9 , 78 м с 2) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение - прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h:

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = - g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Первый график - это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м.

Второй график - движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с. Максимальная высота подъема h = 5 м. Время подъема и время падения t п = 1 с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения - v 0 y . Движение вдоль оси O X - равномерное и прямолинейное, с начальной скоростью v 0 x .

Условия для движения вдоль оси О Х:

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y:

y 0 = 0 ; v 0 y = v 0 sin α ; a y = - g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука - баллистика.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Свободное падение тела - это его равнопеременное движение, которое происходит под действием силы тяжести. В этот момент другие силы, которые могут воздействовать на тело либо отсутствуют, либо настолько малы, что их влияние не учитывается. Например, когда парашютист прыгает из самолета, первые несколько секунд после прыжка он падает в свободном состоянии. Этот короткий отрезок времени характеризуется ощущением невесомости, сходным с тедж.м, что испытывают космонавты на борту космического корабля.

История открытия явления

О свободном падении тела ученые узнали еще в Средневековье: Альберт Саксонский и Николай Орем изучали это явление, но некоторые их выводы были ошибочными. Например, они утверждали, что скорость падающего тяжелого предмета возрастает прямо пропорционально пройденному расстоянию. В 1545 году поправку этой ошибки сделал испанский ученый Д. Сото, установивший факт, что скорость падающего тела увеличивается пропорционально времени, которое проходит от начала падения этого предмета.

В 1590 г. итальянский физик Галилео Галилей сформулировал закон, который устанавливает четкую зависимость пройденного падающим предметом пути от времени. Также ученым было доказано, что при отсутствии воздушного сопротивления все предметы на Земле падают с одинаковым ускорением, хотя до его открытия было принято считать, что тяжелые предметы падают быстрее.

Была открыта новая величина - ускорение свободного падения , которое состоит из двух составляющих: гравитационного и центробежного ускорений. Обозначается ускорение свободного падения буквой g и имеет различное значение для разных точек земного шара: от 9,78 м/с 2 (показатель для экватора) до 9,83 м/с 2 (значение ускорения на полюсах). На точность показателей влияют долгота, широта, время суток и некоторые другие факторы.

Стандартное значение g принято считать равным 9,80665 м/с 2 . В физических расчетах, которые не требуют соблюдения высокой точности, значение ускорения принимают за 9,81 м/с 2 . Для облегчения расчетов допускается принимать значение g равным 10 м/с 2 .

Для того чтобы продемонстрировать, как предмет падает в соответствии с открытием Галилея, ученые устраивают такой опыт: в длинную стеклянную трубку помещают предметы с различной массой, из трубки выкачивают воздух. После этого трубку переворачивают , все предметы под действием силы тяжести падают одновременно на дно трубки, независимо от их массы.

Когда эти же предметы помещены в какую-либо среду, одновременно с силой тяжести на них действует сила сопротивления, поэтому предметы в зависимости от своей массы, формы и плотности будут падать в разное время.

Формулы для расчетов

Существуют формулы, с помощью которых можно рассчитывать различные показатели, связанные со свободным падением. В них используются такие условные обозначения:

  1. u - конечная скорость, с которой перемещается исследуемое тело, м/с;
  2. h - высота, с которой перемещается исследуемое тело, м;
  3. t - время перемещения исследуемого тела, с;
  4. g - ускорение (постоянная величина, равная 9,8 м/с 2).

Формула для определения расстояния, пройденного падающим предметом при известной конечной скорости и времени падения: h = ut /2.

Формула для расчета расстояния, пройденного падающим предметом по постоянной величине g и времени: h = gt 2 /2.

Формула для определения скорости падающего предмета в конце падения при известном времени падения: u = gt .

Формула для расчета скорости предмета в конце падения, если известна высота, с которой падает исследуемый предмет: u = √2 gh.

Если не углубляться в научные знания, бытовое определение свободного перемещения подразумевает передвижение какого-либо тела в земной атмосфере, когда на него не воздействуют никакие посторонние факторы, кроме сопротивления окружающего воздуха и силы тяжести.

В различное время добровольцы соревнуются между собой, пытаясь установить личный рекорд. В 1962 г. испытатель-парашютист из СССР Евгений Андреев установил рекорд, который был занесен в Книгу рекордов Гиннеса: при прыжке с парашютом в свободном падении он преодолел расстояние в 24500 м, во время прыжка не был использован тормозной парашют.

В 1960 г. американец Д. Киттингер совершил парашютный прыжок с высоты 31 тыс. м, но с использованием парашютно-тормозной установки.

В 2005 г. была зафиксирована рекордная скорость при свободном падении - 553 км/ч, а через семь лет установлен новый рекорд - эта скорость была увеличена до 1342 км/ч. Этот рекорд принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который известен во всем мире своими опасными трюками.

Видео

Посмотрите интересное и познавательное видео, которое расскажет вам о скорости падения тел.

Падением называют движение тела в гравитационном поле Земли. Его спецификой является то, что оно неизменно совершается с непрерывным убыстрением, которое равно g?9,81 м/с?. Это необходимо рассматривать и тогда, когда предмет кинут горизонтально.

Вам понадобится

  • – дальномер;
  • – электронный секундомер;
  • – калькулятор.

Инструкция

1. Если тело вольно падает с некоторой высоты h, измерьте ее при помощи дальномера либо всякого иного приспособления. Рассчитайте скорость падения тела v, обнаружив корень квадратный из произведения убыстрения свободного падения на высоту и число 2, v=?(2?g?h). Если перед началом отсчета времени тело теснее имело скорость v0, то к получившемуся итогу прибавьте ее значение v=?(2?g?h)+v0.

2. Пример. Тело вольно падает с высоты 4 м при нулевой исходной скорости. Какова будет его скорость при достижении земной поверхности? Рассчитайте скорость падения тела по формуле, рассматривая, что v0=0. Произведите подстановку v=?(2?9,81?4)?8,86 м/с.

3. Измерьте время падения тела t электронным секундомером в секундах. Обнаружьте его скорость в конце отрезка времени, которое продолжалось движение прибавив к исходной скорости v0 произведения времени на убыстрение свободного падения v=v0+g?t.

4. Пример. Камень начал падение с исходной скорость ю 1 м/с. Обнаружьте его скорость через 2 с. Подставьте значения указанных величин в формулу v=1+9,81?2=20,62 м/с.

5. Рассчитайте скорость падения тела, кинутого горизонтально. В этом случае его движение является итогом 2-х типов движения, в которых единовременно принимает участие тело. Это равномерное движение по горизонтали и равноускоренное – по вертикали. В итоге траектория тела имеет вид параболы. Скорость тела в всякий момент времени будет равна векторной сумме горизонтальной и вертикальной составляющей скорости. От того что угол между векторами этих скоростей неизменно прямой, то для определения скорости падения тела, кинутого горизонтально, воспользуйтесь теоремой Пифагора. Скорость тела будет равна корню квадратному из суммы квадратов горизонтальной и вертикальной составляющих в данный момент времени v=?(v гор?+ v верт?). Вертикальную составляющую скорости рассчитывайте по методике, высказанной в предыдущих пунктах.

6. Пример. Тело кинуто горизонтально с высоты 6 м со скорость ю 4 м/с. Определите его скорость при ударе о землю. Обнаружьте вертикальную составляющую скорости при ударе о землю. Она будет такой же, как если бы тело вольно падало с заданной высоты v верт =?(2?g?h). Подставьте значение в формулу и получите v=?(v гор?+ 2?g?h)= ?(16+ 2?9,81?6)?11,56 м/с.

В классической механике состояние объекта, который свободно движется в гравитационном поле, называется свободным падением . Если объект падает в атмосфере, на него действует дополнительная сила сопротивления и его движение зависит не только от гравитационного ускорения, но и от его массы, поперечного сечения и других факторов. Однако на тело, падающее в вакууме, действует только одна сила, а именно сила тяжести.

Примерами свободного падения являются космические корабли и спутники на околоземной орбите, потому что на них действует единственная сила - земное притяжение. Планеты, вращающиеся вокруг Солнца, также находятся в свободном падении. Предметы, падающие на землю с небольшой скоростью, также могут считаться свободно падающими, так как в этом случае сопротивление воздуха незначительно и им можно пренебречь. Если единственной силой, действующей на предметы, является сила тяжести, а сопротивление воздуха отсутствует, ускорение одинаково для всех предметов и равно ускорению свободного падения на поверхности Земли 9,8 метров в секунду за секунду second (м/с²) или 32,2 фута в секунду за секунду (фут/ с²). На поверхности других астрономических тел ускорение свободного падения будет другим .

Парашютисты, конечно, говорят, что перед раскрытием парашюта они в свободном падении, но на самом деле в свободном падении парашютист не может быть никогда, даже если парашют еще не раскрыт. Да, на парашютиста в «свободном падении» действует сила притяжения, но на него также действует противоположная сила - сопротивление воздуха, причем сила сопротивления воздуха лишь слегка меньше силы земного притяжения.

Если бы не было сопротивления воздуха, скорость тела, находящегося в свободном падении, каждую секунду увеличивалась бы на 9,8 м/с.

Скорость и расстояние свободно падающего тела вычисляется так:

v ₀ - начальная скорость (м/с).

v - конечная вертикальная скорость (м/с).

h ₀ - начальная высота (м).

h - высота падения (м).

t - время падения (с).

g - ускорение свободного падения (9,81 м/с2 у поверхности Земли).

Если v ₀=0 и h ₀=0, имеем:

если известно время свободного падения:

если известно расстояние свободного падения:

если известна конечная скорость свободного падения:

Эти формулы и используются в данном калькуляторе свободного падения.

В свободном падении, когда нет силы для поддержания тела, возникает невесомость . Невесомость - это отсутствие внешних сил, действующих на тело со стороны пола, стула, стола и других окружающих предметов. Иными словами - сил реакции опоры. Обычно эти силы действуют в направлении, перпендикулярном поверхности соприкосновения с опорой, и чаще всего вертикально вверх. Невесомость можно сравнить с плаванием в воде, но так, что кожа воду не ощущает. Все знают это ощущение собственного веса, кода выходишь на берег после долгого купания в море. Именно поэтому для имитации невесомости при тренировках космонавтов и астронавтов используются бассейны с водой.

Само по себе гравитационное поле не может создать давление на ваше тело. Поэтому если вы находитесь в состоянии свободного падения в большом объекте (например, в самолете), который также находится в этом состоянии, на ваше тело не действуют никакие внешние силы взаимодействия тела с опорой и возникает ощущение невесомости, почти такое же, как и в воде.

Самолет для тренировок в условиях невесомости предназначен для создания кратковременной невесомости с целью тренировки космонавтов и астронавтов, а также для выполнения различных экспериментов. Такие самолеты использовались и в настоящее время эксплуатируются в нескольких странах. В течение коротких периодов времени, которые длятся около 25 секунд в течение каждой минуты полета самолет находится в состоянии невесомости, то есть для находящихся в нем людей отсутствует реакция опоры.

Для имитации невесомости использовались различные самолеты: в СССР и в Росси для этого с 1961 года использовались модифицированные серийные самолеты Ту-104АК, Ту-134ЛК, Ту-154МЛК и Ил-76МДК. В США астронавты тренировались с 1959 г. на модифицированных AJ-2, C-131, KC-135 и Boeing 727-200. В Европе Национальным центром космических исследований (CNES, Франция) для тренировок в невесомости используют самолет Airbus A310. Модификация заключается в доработке топливной, гидравлической и некоторых других систем с целью обеспечения их нормальной работы в условиях кратковременной невесомости, а также усиления крыльев для того чтобы самолет мог выдерживать повышенные ускорения (до 2G).

Несмотря на то, что иногда при описании условий свободного падения во время космического полета на орбите вокруг Земли говорят об отсутствии гравитации, конечно сила тяжести присутствует в любом космическом аппарате. Что отсутствует, так это вес, то есть сила реакции опоры на объекты, находящиеся в космическом корабле, которые движутся в пространстве с одинаковым ускорением свободного падения, которое только немного меньше, чем на Земле. Например, на околоземной орбите высотой 350 км, на которой Международная космическая станция (МКС) летает вокруг Земли, гравитационное ускорение составляет 8,8 м/с², что всего на 10% меньше, чем на поверхности Земли.

Для описания реального ускорения объекта (обычно летательного аппарата) относительно ускорения свободного падения на поверхности Земли обычно используют особый термин - перегрузка . Если вы лежите, сидите или стоите на земле, на ваше тело действует перегрузка в 1 g (то есть ее нет). Если же вы находитесь в самолете на взлете, вы испытываете перегрузку примерно в 1,5 g. Если тот же самолет выполняет координированный поворот с малым радиусом, то пассажиры, возможно, испытают перегрузку до 2 g, означающую, что их вес удвоился.

Люди привыкли жить в условиях отсутствия перегрузок (1 g), поэтому любая перегрузка сильно влияет на человеческий организм. Как и в самолетах-лабораториях для создания невесомости, в которых все системы, работающие с жидкостями, должны быть модифицированы для того, чтобы они правильно работали в условиях нулевой (невесомость) и даже отрицательной перегрузки, люди также нуждаются в помощи и аналогичной «модификации», чтобы выжить в таких условиях. Нетренированный человек может потерять сознание при перегрузке 3–5 g (в зависимости от направления действия перегрузки), так как такая перегрузка достаточна для того, чтоб лишить мозг кислорода, потому что сердце не может подать в него достаточно крови. В связи с этим военные пилоты и космонавты тренируются на центрифугах в условиях высоких перегрузок , чтобы предотвратить потерю сознания при них. Для предотвращения кратковременной потери зрения и сознания, которые, по условиям работы, могут оказаться фатальными, пилоты, космонавты и астронавты надевают высотно-компенсирующие костюмы, который ограничивает отток крови от мозга во время перегрузок путем обеспечения равномерного давления на всю поверхность тела человека.