Ламинарное и турбулентное течение. Режимы течения жидкости

Турбулентность - явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики (скорость, давление, температура, плотность) испытывают хаотические флуктуации и поэтому изменяются в пространстве и времени нерегулярно.

Течение жидкости, в котором наблюдается турбулентность, называется турбулентным. При таком течении частицы жидкости и газа совершают неупорядоченные, неустановившиеся движения, что приводит к их интенсивному перемешиванию.

Этим турбулентные течения отличаются от так называемых ламинарных течений, имеющих регулярный характер и способных меняться во времени лишь с изменением действующих сил или внешних условий. При ламинарном течении частицы жидкости или газа перемещаются строго в одном направлении слоями, которые не смешиваются между собой.

Благодаря большой интенсивности хаотического перемешивания турбулентные течения обладают повышенной способностью к передаче тепла, ускоренному распространению химических реакций (например, горения), рассеиванию звуковых и электромагнитных волн, а также к передаче импульса и вследствие этого к повышенному силовому воздействию на обтекаемые ими твердые тела. При этом в турбулентных течениях движущиеся тела испытывают значительно большее сопротивление, что приводит к значительным потерям энергии.

Турбулентность возникает при определенных условиях как следствие гидродинамической неустойчивости ламинарных течений. Ламинарное течение теряет устойчивость и превращается в турбулентное, когда отношение сил инерции к силам вязкости, так называемое число Рейнольдса (Re), превзойдет некоторое критическое значение, характерное для определенных конкретных условий.

Английский физик О. Рейнольде (1842- 1912) следующим образом объяснял своим ученикам физический смысл открытого им критерия:

«Жидкость можно уподобить отряду воинов, ламинарное течение - монолитному походному строю, турбулентное - беспорядочному движению. Скорость жидкости и диаметр трубы - это скорость и величина отряда, вязкость - дисциплина, а плотность - вооружение. Чем больше отряд, чем быстрее его движение и тяжелее вооружение, тем раньше распадается строй. Таким же образом турбулентность возникает в жидкости тем быстрее, чем выше ее плотность, чем меньше вязкость и больше скорость жидкости и диаметр трубы».

Наиболее детально изучены турбулентные течения в трубах, каналах, пограничных слоях, около обтекаемых жидкостью или газом твердых тел и так называемые свободные турбулентные течения - струи, следы за движущимися относительно жидкости или газа твердыми телами и зоны перемешивания между потоками разных скоростей, не разделенными какими-либо твердыми стенками, и т. д., а также явление турбулентности атмосферы.

Турбулентность атмосферы играет большую роль во многих атмосферных явлениях и процессах - обмене энергией между атмосферой и поверхностью, переносе тепла и влаги, испарений с земной поверхности и водоемов, диффузии атмосферных загрязнений, зарождении ветровых волн и ветровых течений в море, рассеянии коротких радиоволн в атмосфере и т. п.

В отличие от турбулентности в искусственных каналах (трубах, струях, пограничных слоях и др.) турбулентность атмосферы имеет специфические особенности: спектр масштабов турбулентных движений в атмосфере весьма широк - от нескольких миллиметров до тысяч километров, турбулентность атмосферы развивается в пространстве, ограниченном одной «стенкой» - поверхностью Земли.

Большой практический интерес представляет вопрос о потерях энергии при движении твердого тела в жидкостях и газе. Дело в том, что при малых скоростях сопротивление движению увеличивается пропорционально скорости. При этом, как показали исследования в аэродинамической трубе, движущийся поток сохраняет ламинарность. При дальнейшем увеличении скорости в какой-то момент начинают образовываться турбулентные завихрения. С этого момента сопротивление возрастает пропорционально квадрату скорости, т. е. большая часть энергии расходуется на образование вихрей в пограничном слое и позади движущегося тела. Поэтому даже незначительный прирост скорости требует больших затрат энергии.

Было замечено, что не подчиняются этой закономерности водные представители животного мира - дельфины. Известно, что они развивают скорость до 50 км/ч и легко поддерживают ее в течение нескольких часов. Если считать, что движение дельфина в воде аналогично движению любого твердого тела, то расчеты показывают, что для этого дельфину не хватит его мускульных сил (парадокс Грея).

Исследование дельфинов в гидродинамической трубе показали, что во время движения поток жидкости, обтекающий тело дельфина, остается ламинарным. Наблюдения за движениями дельфинов в океанариуме привели к следующим результатам: при движении в воде по толстой упругой коже дельфина пробегают складки. Они возникают при критических режимах обтекания, когда скорость возрастает настолько, что поток вот-вот может из ламинарного превратиться в турбулентный. Тут-то на коже и возникает как бы «бегущая волна», которая гасит образующиеся завихрения, помогая поддерживать постоянное ламинарное обтекание.

Как только тайна скорости дельфинов оказалась раскрытой, инженеры стали искать возможности ее использования. Изготовили «дельфинью» обшивку для стальной торпеды. Она состояла из нескольких слоев резины, пространство между которыми заполнили силиконовой жидкостью, перетекающей по узким трубочкам из одного межслойного промежутка в другой. Конечно, это было только грубое приближение, но и оно позволило уменьшить сопротивление движению на 60% (при движении торпеды со скоростью 70 км/ч).

Мягкие оболочки нашли применение не только в судостроении. Представьте себе тысячи километров нефтепроводов. Мощные насосные станции гонят по ним нефть. Энергия этих станций тратится и на преодоление завихрений, турбулентных потоков, возникающих в трубах. Если же трубы изнутри покрыть эластичной оболочкой, сопротивление уменьшится за счет ламинаризации потока нефти, а следовательно, в результате сократится расход электроэнергии.

Хаотичное, неупорядоченное движение жидких частиц существенным образом влияет на характеристики турбулентных течений. Эти течения жидкости – неустановившиеся. Благодаря этому в каждой точке пространства скорости изменяются с течением времени. Мгновенное значение скорости можно выразить:

(2.42)

где – осредненная по времени скорость по направлению x , – пульсационная скорость по этому же направлению. Обычно осредненная скорость сохраняет во времени постоянное значение и направление, поэтому такое течение нужно принимать как среднеустановившееся. Когда рассматривается профиль скоростей турбулентного течения для какой-либо области, обычно рассматривают профиль осредненной скорости.

Рассмотрим поведение турбулентного потока жидкости около твердой стенки (рис. 2.17).

Рис. 2.17. Распределение скорости около твердой стенки

В ядре потока за счет пульсационных скоростей происходит непрерывное перемешивание жидкости. У твердых стенок поперечные движения частиц жидкости невозможны.

Около твердой стенки жидкость течет в ламинарном режиме.
Между ламинарным пограничным слоем и ядром потока существует переходная зона.

Движение жидкости при турбулентном режиме всегда сопровождается значительно большей затратой энергии, чем при ламинарном. При ламинарном режиме энергия расходуется на вязкое трение между слоями жидкости; при турбулентном же режиме, помимо этого, значительная часть энергии затрачивается на процесс перемешивания, вызывающий в жидкости дополнительные касательные напряжения.

Для определения напряжения сил трения в турбулентном потоке используется формула:

где – напряжение вязкого течения, – турбулентное напряжение, вызванное перемешиванием. Как известно, определяется законом вязкого трения Ньютона:

t в
(2.44)

Следуя полуэмпирической теории турбулентности Прандтля, принимая, что величина поперечных пульсаций скорости имеет в среднем один и тот же порядок, что и продольные пульсации, можно записать:

. (2.45)

Здесь r – плотность жидкости, l – длина пути перемешивания, – градиент осредненной скорости.

Величина l , характеризующая средний путь пробега частиц жидкости в поперечном направлении, обусловлена турбулентными пульсациями.
По гипотезе Прандтля, длина пути перемешивания l пропорциональна расстоянию частицы от стенки:

где c – универсальная постоянная Прандтля.

В турбулентном потоке в трубе толщина гидродинамического пограничного слоя растет значительно быстрее, чем для ламинарного.
Это приводит к уменьшению длины начального участка. В инженерной практике обычно принимают:

(2.47)

Поэтому довольно часто влиянием начального участка
на гидродинамические характеристики потока пренебрегают.

Рассмотрим распределение осредненной скорости по сечению трубы. Примем касательное напряжение в турбулентном потоке постоянным
и равным напряжению в стенке . Тогда после интегрирования уравнения (2.44) получим:

. (2.48)

Здесь – величина, имеющая размерность скорости, поэтому называется динамической скоростью.

Выражение (2.48) представляет собой логарифмический закон распределения осредненных скоростей для ядра турбулентного потока.

Путем несложных преобразований формулу (2.48) можно привести
к следующему безразмерному виду:

(2.49)

где – безразмерное расстояние от стенки; M – константа.

Как показывают опыты, c имеет одинаковое значение для всех случаев турбулентного течения . Значение M было определено опытами Никурадзе: . Итак, имеем:

(2.50)

В качестве безразмерного параметра, характеризующего толщину соответствующих зон, используется комплекс :

вязкий ламинарный подслой: ,

переходная зона: ,

турбулентное ядро: .

При турбулентом режиме отношение осредненной скорости
к максимальной осевой составляет от 0,75 до 0,9.

Зная закон распределения скоростей (рис. 2.18), можно найти величину гидравлических сопротивлений. Однако для определения гидравлических сопротивлений можно использовать более простое соотношение, а именно: критериальное уравнение движения вязкой жидкости, полученное ранее, в первой части дисциплины.

Рис. 2.18. Распределение скоростей в трубе

при ламинарном и турбулентном режимах

Для горизонтальной прямой трубы в случае напорного течения вязкой жидкости критериальное уравнение имеет вид:

(2.51)

где – геометрические комплексы, – критерий Рейнольдса, – критерий Эйлера. Они определяются как:

где ∆ – абсолютная шероховатость трубы, l – длина трубопровода,
d – внутренний диаметр трубы. Из опыта известно, что потери давления прямо пропорциональны . Поэтому можно записать:

(2.52)

Далее обозначим неизвестную функцию , распишем критерий Эйлера . Тогда из уравнения (2.52) для потери давления получим:

(2.53)

где l – коэффициент гидравлического трения, w – средняя скорость потока.

Полученное уравнение носит название уравнение Дарси – Вейсбаха. Уравнение (2.53) может быть представлено в виде потери напора:

(2.54)

Таким образом, расчет потери давления или напора сводится к определению коэффициента гидравлического трения l.

График Никурадзе

Среди многочисленных работ по исследованию зависимости выберем работу Никурадзе. Никурадзе подробно исследовал эту зависимость для труб с равномерно-зернистой поверхностью, созданной искусственно (рис. 2.19).

.

Рис. 2.19. График Никурадзе

Значение коэффициента определяется по эмпирическим формулам, полученным для различных областей сопротивления по кривым Никурадзе.

1. Для ламинарного режима течения, т.е. при , коэффициент l для всех труб независимо от их шероховатости определяется из точного решения задачи о ламинарном течении жидкости в прямой круглой трубе по формуле Пуазейля:

2. В узкой области наблюдается скачкообразный рост коэффициента сопротивления. Эта область перехода от ламинарного режима к турбулентному характеризуется неустойчивым характером течения. Здесь наиболее вероятен на практике турбулентный режим
и правильнее всего пользоваться формулами для зоны 3. Можно также применить эмпирическую формулу:

3. В области гидравлически гладких труб при толщина ламинарного слоя у стенки d больше абсолютной шероховатости стенок D, влияние выступов шероховатости, омываемых безотрывным потоком, практически не сказывается, и коэффициент сопротивления вычисляется здесь на основе обобщения опытных данных
по эмпирическим соотношениям, например по формуле Блаузиуса:

4. В диапазоне чисел Рейнольдса наблюдается переходная область от гидравлически гладких труб к шероховатым. В этой области (частично шероховатых труб), когда , т.е. выступы шероховатости с высотой, меньшей средней величины D, продолжают оставаться в пределах ламинарного слоя, а выступы с высотой, большей средней, оказываются в турбулентной области потока, проявляется тормозящее действие шероховатости. Коэффициент l в этом случае подсчитывается также из эмпирических соотношений, например
по формуле Альштуля:

(2.58)

5. При толщина ламинарного слоя у стенки d достигает своего минимального значения, т.е. и не меняется
с дальнейшим ростом числа Re. Поэтому l не зависит от числа Re,
а зависит лишь от e. В этой области (шероховатых труб или области квадратичного сопротивления) для нахождения коэффициента может быть рекомендована, например, формула Шифринсона:

(2.59)

В этой зоне значение l находится в пределах .

Были проведены исследования для определения l с естественной шероховатостью. Для этих труб вторая зона не определяется. Для расчета
l обычно предлагаются вышеуказанные формулы.

Турбулентное движение жидкости наиболее часто встречается как в трубах, так и в различных открытых руслах. В связи со сложностью турбулентного движения механизм турбулентности потока до настоящего времени все еще недостаточно полно изучен.

Для турбулентного движения характерно неупорядоченное перемещение частиц жидкости. Происходит движение частиц в продольном, вертикальном и поперечном направлениях, в результате этого наблюдается интенсивное перемешивание их в потоке. Частицы жидкости описывают весьма сложные траектории движения. При соприкосновении турбулентного потока с шероховатой поверхностью русла частицы приходят во вращательное движение, т.е. возникают местные вихри различного размера.

Скорость в точке турбулентного потока жидкости получила название местной (актуальной) мгновенной скорости . Мгновенная скорость по координатным осям х , у , z - , ,:

- продольная составляющая скорости по направлению движения потока;

- окружная составляющая;

- поперечная составляющая скорости.

.

Все составляющие мгновенной скорости (, ,)меняются во времени. Изменения составляющих мгновенной скорости во времени называются пульсацией скорости по координатным осям. Следовательно, турбулентное движение в действительности является неустановившимся (нестационарным).

Скорости в определенной точке турбулентного потока жидкости можно измерить, например, с помощью лазерного прибора (ЛДИС). В результате измерений зафиксируется пульсация скоростей по направлениям х , у , z .

На рис. 4.7 изображен график пульсации продольной мгновенной скорости во времени при условии установившегося движения жидкости. Продольные скорости непрерывно изменяются, колебания их происходят около некоторой постоянной скорости. Выделим на графике два достаточно больших отрезка времени и Определим за время и среднюю по времени скорость .

Рис. 4.7. График пульсации продольной мгновенной скорости

Осредненная (средняя по времени) скорость может быть найдена так:

и
. (4.70)

Величина будет одинаковой на отрезках времени и. На рис. 4.7 площадь прямоугольников высотой и шириной или
будет равновелика площади, заключенной между пульсационной линией и значениями времени (отрезок и
), что и следует из зависимостей (4.70).

Разность между фактической мгновенной скоростью и осредненным значением - пульсационная составляющая в продольном направлении движения :

. (4.71)

Сумма пульсационных скоростей за принятые отрезки времени в рассматриваемой точке потока будет равна нулю.

На рис. 4.8 показан график пульсации поперечной мгновенной скорости . Для рассматриваемых отрезков времени

и
. (4.72)

Рис. 4.8. График пульсации поперечной мгновенной скорости

Сумма положительных площадей на графике, ограниченном пульсационной кривой, равна сумме отрицательных площадей. Пульсационная скорость в поперечном направлении равна поперечной скорости ,
.

В результате пульсации между соседними слоями жидкости возникает интенсивный обмен частицами, что приводит к непрерывному перемешиванию. Обмен частицами и, соответственно, массами жидкости в потоке в поперечном направлении приводит к обмену количеством движения (
).

В связи с введением понятия осредненной скорости турбулентный поток заменяется моделью потока, частицы которого движутся со скоростями, равными определенным продольным скоростям , и гидростатические давления в разных точках потока жидкости будут равны осредненным давлениям р . Согласно рассматриваемой модели поперечные мгновенные скорости
, т.е. будет отсутствовать поперечный массообмен частицами между горизонтальными слоями движущейся жидкости. Модель такого потока называется осредненным потоком. Такую модель турбулентного потока предложили Рейнольдс и Буссинеск (1895-1897). Приняв такую модель, можно рассматривать турбулентное движение как движение установившееся . Если в турбулентном потоке осредненная продольная скорость является постоянной, тогда условно можно принять струйчатую модель движения жидкости. На практике при решении инженерных практических задач рассматриваются только осредненные скорости, а также распределение этих скоростей в живом сечении, которые характеризуются эпюрой скоростей. Средняя скорость в турбулентном потокеV - средняя скорость из осредненных местных скоростей в разных точках.

Как показывают опыты, возможны два режима течения жидкостей и газов: ламинарный и турбулентный.

Ламинарным называется сложное течение без перемешивания частиц жидкости и без пульсаций скоростей и давлений. При ламинарном движении жидкости в прямой трубе постоянного поперечного сечения все линии тока направлены параллельно оси труб, отсутствуют поперечные перемещения жидкости. Однако, ламинарное движение нельзя считать безвихревым, так как в нем хотя и нет видимых вихрей, но одновременно с поступательным движением имеет место упорядоченное вращательное движение отдельных частиц жидкости вокруг своих мгновенных центров с некоторыми угловыми скоростями.

Турбулентным называется течение, cопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении наряду с основным продольным перемещением жидкости происходят поперечные перемещения и вращательное движение отдельных объемов жидкости.

Изменение режима течения происходит при определенном соотношении между скоростью V, диаметром d, и вязкостью υ. Эти три фактора входят в формулу безразмерного критерия Рейнольдса R e = V d /υ, поэтому вполне закономерно, что именно число R e , является критерием, определяющим режим течения в трубах.

Число R e , при котором ламинарное движение приходит в турбулентное, называется критическим Reкр.

Как показывают опыты, для труб круглого сечения Rекр = 2300, то есть при Re < Reкр течение является ламинарным, а при Rе > Reкр - турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re = 4000, а при Re = 2300 - 4000 имеет место переходная критическая область.

Смена режима течения при достижении Re кр обусловлена тем, что одно течение теряет устойчивость, а другое - приобретает.

Рассмотрим более подробно ламинарное течение.

Одним из наиболее простых видов движения вязкой жидкости является ламинарное движение в цилиндрической трубе, а в особенности его частный случай - установившееся равномерное движение. Теория ламинарного движения жидкости основывается на законе трения Ньютона . Это трение между слоями движущейся жидкости является единственным источником потерь энергии.

Рассмотрим установленное ламинарное течение жидкости в прямой трубе с d = 2 r 0

Чтобы исключить влияние силы тяжести и этим упростить вывод допустим, что труба расположена горизонтально.

Пусть в сечении 1-1 давление равно P 1 а в сечении 2-2 - P 2.

Ввиду постоянства диаметра трубы V = const, £ = const, тогда уравнение Бернулли для выбранных сечений примет вид:

Отсюда , что и будут показывать пьезометры, установленные в сечениях.


В потоке жидкости выделим цилиндрический объем.

Запишем уравнение равномерного движения выделенного объема жидкости, то есть равенство 0 суммы сил, действующих на объем.

Отсюда следует, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в зависимости от радиуса.

Если выразить касательное напряжение t по закону Ньютона, то будем иметь

Знак минус обусловлен тем, что направление отсчета r (от оси к стенке противоположного направления отсчета y (от стенки)

И подставить значение t в предыдущее уравнение, то получим

Отсюда найдем приращение скорости.

Выполнив интегрирование получим.

Постоянную интегрирования найдем из условия при r = r 0; V = 0

Скорость по окружности радиусом r равна

Это выражение является законом распределения скорости по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, является параболой второй степени. Максимальная скорость, имеющая место в центре сечения при r = 0 равна

Применим полученный закон распределения скоростей для расчета расхода.

Площадку dS целесообразно взять в виде кольца радиусом r и шириной dr

После интегрирования по всей площади поперечного сечения, то есть от r = 0, до r = r 0

Для получения закона сопротивления выразим; (через предыдущую формулу расхода)

µ=υρ r 0 = d/2 γ = ρg. Тогда получим закон Пуарейля;

ТУРБУЛЕНТНЫМ называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Нарядус основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости.

Турбулентное течение жидкости наблюдаются при определенных условиях (при достаточно больших числах Рейнольдса ) в трубах, каналах, пограничных слоях около поверхностей движущихся относительно жидкости или газа твёрдых тел, в следах за такими телами, струях, зонах перемешивания между потоками разной скорости, а также в разнообразных природных условиях.

Т. т. отличаются от ламинарных не только характером движения частиц, но также распределением осреднённой скорости по сечению потока, зависимостью средней или макс. скорости, расхода и коэф. сопротивления от числа Рейнольдса Re, гораздо большей интенсивностью тепломассообмена. Профиль осреднённой скорости Т. т. в трубах и каналах отличается от параболич. профиля ламинарных течений меньшей кривизной у оси и более быстрым возрастанием скорости у стенок.

Потери напора при турбулентном движении жидкости

Все гидравлические потери энергии делятся на два типа: потери на трение по длине трубопроводов и местные потери, вызванные такими элементами трубопроводов, в которых вследствие изменения размеров или конфигурации русла происходит изменение скорости потока, отрыв потока от стенок русла и возникновение вихреобразования.

Простейшие местные гидравлические сопротивления можно разделить на расширения, сужения и повороты русла, каждое из которых может быть внезапным или постепенным. Более сложные случаи местного сопротивления представляют собой соединения или комбинации перечисленных простейших сопротивлений.

При турбулентном режиме движения жидкости в трубах эпюра распределения скоростей имеет вид, показанный на рис. В тонком пристенном слое толщиной δ жидкость течет в ламинарном режиме, а остальные слои текут в турбулентном режиме, и называются турбулентным ядром . Таким образом, строго говоря, турбулентного движения в чистом виде не существует. Оно сопровождается ламинарным движением у стенок, хотя слой δ с ламинарным режимом весьма мал по сравнению с турбулентным ядром.

Модель турбулентного режима движения жидкости

Основной расчетной формулой для потерь напора при турбулентном течении жидкости в круглых трубах является уже приводившаяся выше эмпирическая формула, называемая формулой Вейсбаха-Дарси и имеющая следующий вид:

Различие заключается лишь в значениях коэффициента гидравлического трения λ. Этот коэффициент зависит от числа Рейнольдса Re и от безразмерного геометрического фактора - относительной шероховатости Δ/d (или Δ/r 0 , где r 0 - радиус трубы).

Критическое число Рейнольдса

Число Рейнольдса, при котором происходит переход от одного режима движения жидкости в другой режим, называется критическим. При числе Рейнольдса наблюдается ламинарный режим движения, при числе Рейнольдса - турбулентный режим движения жидкости. Чаще критическое значение числа принимают равным, это значение соответствует переходу движения жидкости от турбулентного режима к ламинарного. При переходе от ламинарного режима движения жидкости к турбулентному критическое значение имеет большее значение. Критическое значение числа Рейнольдса увеличивается в трубах, сужаются, и уменьшается в тех, что расширяются. Это объясняется тем, что при сужении поперечного сечения скорость движения частиц увеличивается, поэтому тенденция к поперечного перемещения уменьшается.

Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При Re < Re кр течение является ламинарным, а при Re > Re кр течение является турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re примерно равно 4000, а при Re = 2300…4000 имеет место переходная, критическая область.

Как показывает опыт, для труб круглого сечения Re кр примерно равно 2300.

Режим движения жидкости напрямую влияет на степень гидравлического сопротивления трубо-проводов.

Для ламинарного режима

Для турбулентного режима